This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 7 of 7
Filtering by

Clear all filters

152941-Thumbnail Image.png
Description
Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical

Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys.

Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection.

The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per second. In comparison, the natural alert signal - door opening and closing - evoked the faster head turns than other stimulus conditions. These results suggest that behaviorally relevant stimulus such as alert signals evoke faster head-turn responses in marmoset monkeys.
ContributorsSimhadri, Sravanthi (Author) / Zhou, Yi (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2014
Description
Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating

Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating one sense to another, offers a potential avenue to further assist those with cochlear implants, in addition to the promise they hold for those without existing aids. A user study with a vibrotactile device is evaluated to exhibit the effectiveness of this approach in an auditory gender discrimination task. Additionally, preliminary computational work is included that demonstrates advantages and limitations encountered when expanding the complexity of future implementations.
ContributorsButts, Austin McRae (Author) / Helms Tillery, Stephen (Thesis advisor) / Berisha, Visar (Committee member) / Buneo, Christopher (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2015
156919-Thumbnail Image.png
Description
Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today,

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.
ContributorsKanberoglu, Berkay (Author) / Frakes, David (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
156805-Thumbnail Image.png
Description
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
ContributorsDutta, Arindam (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Richmond, Christ (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
156975-Thumbnail Image.png
Description
There is a critical need for creating an implantable microscale neural interface that can chronically monitor neural activity and oxygenation. These are key aspects for understating the development of impaired neural circuits and their functions. A technology with such capability would foster new insights in the studies of brain diseases

There is a critical need for creating an implantable microscale neural interface that can chronically monitor neural activity and oxygenation. These are key aspects for understating the development of impaired neural circuits and their functions. A technology with such capability would foster new insights in the studies of brain diseases and disorders. The propose is that MR-PISTOL (Proton imaging of Siloxane to Map Tissue Oxygenation Levels) imaging technique can be used for direct measurements of oxygen partial pressure at microelectrode-tissue interface. The strategy consists of coating microelectrodes with soft-silicone, a ultra-soft conductive PDMS (polydimethylsiloxane), as a carrier for liquid siloxanes MR-PISTOL contrast agents. This work presents a proof-of-concept of an injection molding technique for batch fabricate microelectrodes with such coating. Also, reports stability studies of soft-silicone loaded with liquid polydimethylsiloxane (PDMSO) in rodent brains. A batch of thirty coated carbon electrodes was achieved using candy molds. Coating uniformity was evaluated in twelve probes. They were randomly chosen and imaged with a custom image setup that allows 90o rotation of the probes. The total average coating thickness before and after rotation were 0.397 millimeters with standard deviation of 0.070 millimeters and 0.442 millimeters with standard deviation of 0.062 millimeters. Therefore, data confirms that this technique yields uniform coating. Stability of fabricated coated carbon electrodes unloaded (n= 3) and loaded with PDMSO (n= 3) was assessed. 3D X-ray imaging using Zeiss Xradia 520 machine was chosen for studying coatings mechanical stability in ex-vivo rat brain. Transmission electron microscopy (TEM) and scanning electron microscope (SEM) with an energy dispersive x-ray microanalysis (EDS) detector were used to investigate their chemical stability in in vivo mouse brain. Initial EDS analysis from TEM and SEM of acute (6 hours) and chronic (2 weeks) brain slices suggest that PDMSO does not leach into brain. More experiments should be done to confirm and endorse this finding. The mechanical study shows that coating loaded with PDMSO delaminated during insertion. This was not observed with electrodes used in the chemical stability studies. Further experiments need to be done to identify possible causes of mechanical failures.
Contributorsde Mesquita Teixeira, Livia (Author) / Muthuswamy, Jitendran (Thesis advisor, Committee member) / Kodibagkar, Vikram (Thesis advisor, Committee member) / Sridharan, Arati (Committee member) / Arizona State University (Publisher)
Created2018
191022-Thumbnail Image.png
Description
The field of non-invasive neurostimulation techniques offer promising avenues for the treatment of various neurological and psychiatric disorders such as Parkinson's disease, migraines, chronic pain, and epilepsy. The proposed work is a novel technique for the production of high-end ultrasonic forces by interaction of gigahertz electromagnetic radiations for the purpose

The field of non-invasive neurostimulation techniques offer promising avenues for the treatment of various neurological and psychiatric disorders such as Parkinson's disease, migraines, chronic pain, and epilepsy. The proposed work is a novel technique for the production of high-end ultrasonic forces by interaction of gigahertz electromagnetic radiations for the purpose of neural modulation. These ultrasonic forces are created in dielectric materials such as cell membranes by the electrostrive effect, providing a potential new neurotherapeutic technique. The ability for this technique to provide neurostimulatory effects was investigated using in vitro studies of neuronal cultures and in vivo studies on sciatic nerves. Direct exposure of E18 rat cortical neurons to these EM radiations demonstrated changes in cellular membrane potential, suggesting effects could be potentially similar to direct electrical stimulation. An exploration of neuromodulatory effects to rat sciatic nerves indicates exposure produces changes to peak-to-peak muscular response. These findings suggest promising results for this new potential neuromodulation modality.
ContributorsDagher, Michael Jonathan (Author) / Muthuswamy, Jitendran (Thesis advisor) / Towe, Bruce (Committee member) / Sridharan, Arati (Committee member) / Aberle, James (Committee member) / Arizona State University (Publisher)
Created2023
158383-Thumbnail Image.png
Description
Brain micromotion is a phenomenon that arises from basic physiological functions such as respiration (breathing) and vascular pulsation (pumping blood or heart rate). These physiological processes cause small micro displacements of 2-4µm for vascular pulsation and 10-30µm for respiration, in rat models. One problem related to micromotion is the instability

Brain micromotion is a phenomenon that arises from basic physiological functions such as respiration (breathing) and vascular pulsation (pumping blood or heart rate). These physiological processes cause small micro displacements of 2-4µm for vascular pulsation and 10-30µm for respiration, in rat models. One problem related to micromotion is the instability of the probe and its ability to acquire stable neural recordings in chronic studies. It has long been thought the membrane potential (MP) changes due to micromotion in the presence of brain implants were an artefact caused by the implant. Here is shown that intracellular membrane potential changes are a consequence of the activation of mechanosensitive ion channels at the neural interface. A combination of aplysia and rat animal models were used to show activation of mechanosensitive ion channels is occurring during a neural recording. During simulated micromotion of displacements of 50μm and 100μm at a frequency of 1 Hz, showed a change of 8 and 10mV respectively and that the addition of Ethylenediaminetetraacetic acid (EDTA) inhibited the membrane potential changes. The application of EDTA showed a 71% decrease in changes in membrane potential changes due to micromotion. Simulation of breathing using periodic motion of a probe in an Aplysia model showed that there were no membrane potential changes for <1.5kPa and action potentials were observed at >3.1kPa. Drug studies utilizing 5-HT showed an 80% reduction in membrane potentials. To validate the electrophysiological changes due to micromotion in a rat model, a double barrel pipette for simultaneous recording and drug delivery was designed, the drug delivery tip was recessed from the recording tip no greater than 50μm on average. The double barrel pipette using iontophoresis was used to deliver 30 μM of Gadolinium Chloride (Gd3+) into the microenvironment of the cell. Here is shown a significant reduction in membrane potential for n = 13 cells across 4 different rats tested using Gd3+. Membrane potential changes related to breathing and vascular pulsation were reduced between approximately 0.25-2.5 mV for both breathing and heart rate after the addition of Gd3+, a known mechanosensitive ion channel blocker.
ContributorsDuncan, Jonathan Leroy (Author) / Muthuswamy, Jitendran (Thesis advisor) / Greger, Bradley (Committee member) / Sridharan, Arati (Committee member) / Arizona State University (Publisher)
Created2020