This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 7 of 7
Filtering by

Clear all filters

152941-Thumbnail Image.png
Description
Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical

Head movement is known to have the benefit of improving the accuracy of sound localization for humans and animals. Marmoset is a small bodied New World monkey species and it has become an emerging model for studying the auditory functions. This thesis aims to detect the horizontal and vertical rotation of head movement in marmoset monkeys.

Experiments were conducted in a sound-attenuated acoustic chamber. Head movement of marmoset monkey was studied under various auditory and visual stimulation conditions. With increasing complexity, these conditions are (1) idle, (2) sound-alone, (3) sound and visual signals, and (4) alert signal by opening and closing of the chamber door. All of these conditions were tested with either house light on or off. Infra-red camera with a frame rate of 90 Hz was used to capture of the head movement of monkeys. To assist the signal detection, two circular markers were attached to the top of monkey head. The data analysis used an image-based marker detection scheme. Images were processed using the Computation Vision Toolbox in Matlab. The markers and their positions were detected using blob detection techniques. Based on the frame-by-frame information of marker positions, the angular position, velocity and acceleration were extracted in horizontal and vertical planes. Adaptive Otsu Thresholding, Kalman filtering and bound setting for marker properties were used to overcome a number of challenges encountered during this analysis, such as finding image segmentation threshold, continuously tracking markers during large head movement, and false alarm detection.

The results show that the blob detection method together with Kalman filtering yielded better performances than other image based techniques like optical flow and SURF features .The median of the maximal head turn in the horizontal plane was in the range of 20 to 70 degrees and the median of the maximal velocity in horizontal plane was in the range of a few hundreds of degrees per second. In comparison, the natural alert signal - door opening and closing - evoked the faster head turns than other stimulus conditions. These results suggest that behaviorally relevant stimulus such as alert signals evoke faster head-turn responses in marmoset monkeys.
ContributorsSimhadri, Sravanthi (Author) / Zhou, Yi (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2014
Description
Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating

Through decades of clinical progress, cochlear implants have brought the world of speech and language to thousands of profoundly deaf patients. However, the technology has many possible areas for improvement, including providing information of non-linguistic cues, also called indexical properties of speech. The field of sensory substitution, providing information relating one sense to another, offers a potential avenue to further assist those with cochlear implants, in addition to the promise they hold for those without existing aids. A user study with a vibrotactile device is evaluated to exhibit the effectiveness of this approach in an auditory gender discrimination task. Additionally, preliminary computational work is included that demonstrates advantages and limitations encountered when expanding the complexity of future implementations.
ContributorsButts, Austin McRae (Author) / Helms Tillery, Stephen (Thesis advisor) / Berisha, Visar (Committee member) / Buneo, Christopher (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2015
156919-Thumbnail Image.png
Description
Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today,

Motion estimation is a core task in computer vision and many applications utilize optical flow methods as fundamental tools to analyze motion in images and videos. Optical flow is the apparent motion of objects in image sequences that results from relative motion between the objects and the imaging perspective. Today, optical flow fields are utilized to solve problems in various areas such as object detection and tracking, interpolation, visual odometry, etc. In this dissertation, three problems from different areas of computer vision and the solutions that make use of modified optical flow methods are explained.

The contributions of this dissertation are approaches and frameworks that introduce i) a new optical flow-based interpolation method to achieve minimally divergent velocimetry data, ii) a framework that improves the accuracy of change detection algorithms in synthetic aperture radar (SAR) images, and iii) a set of new methods to integrate Proton Magnetic Resonance Spectroscopy (1HMRSI) data into threedimensional (3D) neuronavigation systems for tumor biopsies.

In the first application an optical flow-based approach for the interpolation of minimally divergent velocimetry data is proposed. The velocimetry data of incompressible fluids contain signals that describe the flow velocity. The approach uses the additional flow velocity information to guide the interpolation process towards reduced divergence in the interpolated data.

In the second application a framework that mainly consists of optical flow methods and other image processing and computer vision techniques to improve object extraction from synthetic aperture radar images is proposed. The proposed framework is used for distinguishing between actual motion and detected motion due to misregistration in SAR image sets and it can lead to more accurate and meaningful change detection and improve object extraction from a SAR datasets.

In the third application a set of new methods that aim to improve upon the current state-of-the-art in neuronavigation through the use of detailed three-dimensional (3D) 1H-MRSI data are proposed. The result is a progressive form of online MRSI-guided neuronavigation that is demonstrated through phantom validation and clinical application.
ContributorsKanberoglu, Berkay (Author) / Frakes, David (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2018
156805-Thumbnail Image.png
Description
Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques

Machine learning (ML) has played an important role in several modern technological innovations and has become an important tool for researchers in various fields of interest. Besides engineering, ML techniques have started to spread across various departments of study, like health-care, medicine, diagnostics, social science, finance, economics etc. These techniques require data to train the algorithms and model a complex system and make predictions based on that model. Due to development of sophisticated sensors it has become easier to collect large volumes of data which is used to make necessary hypotheses using ML. The promising results obtained using ML have opened up new opportunities of research across various departments and this dissertation is a manifestation of it. Here, some unique studies have been presented, from which valuable inference have been drawn for a real-world complex system. Each study has its own unique sets of motivation and relevance to the real world. An ensemble of signal processing (SP) and ML techniques have been explored in each study. This dissertation provides the detailed systematic approach and discusses the results achieved in each study. Valuable inferences drawn from each study play a vital role in areas of science and technology, and it is worth further investigation. This dissertation also provides a set of useful SP and ML tools for researchers in various fields of interest.
ContributorsDutta, Arindam (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Richmond, Christ (Committee member) / Corman, Steven (Committee member) / Arizona State University (Publisher)
Created2018
154718-Thumbnail Image.png
Description
Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of

Human walking has been a highly studied topic in research communities because of its extreme importance to human functionality and mobility. A complex system of interconnected gait mechanisms in humans is responsible for generating robust and consistent walking motion over unpredictable ground and through challenging obstacles. One interesting aspect of human gait is the ability to adjust in order to accommodate varying surface grades. Typical approaches to investigating this gait function focus on incline and decline surface angles, but most experiments fail to address the effects of surface grades that cause ankle inversion and eversion. There have been several studies of ankle angle perturbation over wider ranges of grade orientations in static conditions; however, these studies do not account for effects during the gait cycle. Furthermore, contemporary studies on this topic neglect critical sources of unnatural stimulus in the design of investigative technology. It is hypothesized that the investigation of ankle angle perturbations in the frontal plane, particularly in the context of inter-leg coordination mechanisms, results in a more complete characterization of the effects of surface grade on human gait mechanisms. This greater understanding could potentially lead to significant applications in gait rehabilitation, especially for individuals who suffer from impairment as a result of stroke. A wearable pneumatic device was designed to impose inversion and eversion perturbations on the ankle through simulated surface grade changes. This prototype device was fabricated, characterized, and tested in order to assess its effectiveness. After testing and characterizing this device, it was used in a series of experiments on human subjects while data was gathered on muscular activation and gait kinematics. The results of the characterization show success in imposing inversion and eversion angle perturbations of approximately 9° with a response time of 0.5 s. Preliminary experiments focusing on inter-leg coordination with healthy human subjects show that one-sided inversion and eversion perturbations have virtually no effect on gait kinematics. However, changes in muscular activation from one-sided perturbations show statistical significance in key lower limb muscles. Thus, the prototype device demonstrates novelty in the context of human gait research for potential applications in rehabilitation.
ContributorsBarkan, Andrew (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2016
168324-Thumbnail Image.png
Description
This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant

This thesis work presents two separate studies:The first study assesses standing balance under various 2-dimensional (2D) compliant environments simulated using a dual-axis robotic platform and vision conditions. Directional virtual time-to-contact (VTC) measures were introduced to better characterize postural balance from both temporal and spatial aspects, and enable prediction of fall-relevant directions. Twenty healthy young adults were recruited to perform quiet standing tasks on the platform. Conventional stability measures, namely center-of-pressure (COP) path length and COP area, were also adopted for further comparisons with the proposed VTC. The results indicated that postural balance was adversely impacted, evidenced by significant decreases in VTC and increases in COP path length/area measures, as the ground compliance increased and/or in the absence of vision (ps < 0.001). Interaction effects between environment and vision were observed in VTC and COP path length measures (ps ≤ 0.05), but not COP area (p = 0.103). The estimated likelihood of falls in anterior-posterior (AP) and medio-lateral (ML) directions converged to nearly 50% (almost independent of the foot setting) as the experimental condition became significantly challenging. The second study introduces a deep learning approach using convolutional neural network (CNN) for predicting environments based on instant observations of sway during balance tasks. COP data were collected from fourteen subjects while standing on the 2D compliant environments. Different window sizes for data segmentation were examined to identify its minimal length for reliable prediction. Commonly-used machine learning models were also tested to compare their effectiveness with that of the presented CNN model. The CNN achieved above 94.5% in the overall prediction accuracy even with 2.5-second length data, which cannot be achieved by traditional machine learning models (ps < 0.05). Increasing data length beyond 2.5 seconds slightly improved the accuracy of CNN but substantially increased training time (60% longer). Importantly, averaged normalized confusion matrices revealed that CNN is much more capable of differentiating the mid-level environmental condition. These two studies provide new perspectives in human postural balance, which cannot be interpreted by conventional stability analyses. Outcomes of these studies contribute to the advancement of human interactive robots/devices for fall prevention and rehabilitation.
ContributorsPhan, Vu Nguyen (Author) / Lee, Hyunglae (Thesis advisor) / Peterson, Daniel (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2021
168484-Thumbnail Image.png
Description
The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with

The Soft Robotic Hip Exosuit (SR-HExo) was designed, fabricated, and tested in treadmill walking experiments with healthy participants to gauge effectivity of the suit in assisting locomotion and in expanding the basin of entrainment as a method of rehabilitation. The SR-HExo consists of modular, compliant materials to move freely with a user’s range of motion and is actuated with X-oriented flat fabric pneumatic artificial muscles (X-ff-PAM) that contract when pressurized and can generate 190N of force at 200kPa in a 0.3 sec window. For use in gait assistance experiments, X-ff-PAM actuators were placed anterior and posterior to the right hip joint. Extension assistance and flexion assistance was provided in 10-45% and 50-90% of the gait cycle, respectively. Device effectivity was determined through range of motion (ROM) preservation and hip flexor and extensor muscular activity reduction. While the active suit reduced average hip ROM by 4o from the target 30o, all monitored muscles experienced significant reductions in electrical activity. The gluteus maximus and biceps femoris experienced electrical activity reduction of 13.1% and 6.6% respectively and the iliacus and rectus femoris experienced 10.7% and 27.7% respectively. To test suit rehabilitative potential, the actuators were programmed to apply periodic torque perturbations to induce locomotor entrainment. An X-ff-PAM was contracted at the subject’s preferred gait frequency and, in randomly ordered increments of 3%, increased up to 15% beyond. Perturbations located anterior and posterior to the hip were tested separately to assess impact of location on entrainment characteristics. All 11 healthy participants achieved entrainment in all 12 experimental conditions in both suit orientations. Phase-locking consistently occurred around toe-off phase of the gait cycle (GC). Extension perturbations synchronized earlier in the gait cycle (before 60% GC where peak hip extension occurs) than flexion perturbations (just after 60% GC at the transition from full hip extension to hip flexion), across group averaged results. The study demonstrated the suit can significantly extend the basin of entrainment and improve transient response compared to previously reported results and confirms that a single stable attractor exists during gait entrainment to unidirectional hip perturbations.
ContributorsBaye-Wallace, Lily (Author) / Lee, Hyunglae (Thesis advisor) / Marvi, Hamidreza (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2021