This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 452
Filtering by

Clear all filters

149993-Thumbnail Image.png
Description
Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's

Many products undergo several stages of testing ranging from tests on individual components to end-item tests. Additionally, these products may be further "tested" via customer or field use. The later failure of a delivered product may in some cases be due to circumstances that have no correlation with the product's inherent quality. However, at times, there may be cues in the upstream test data that, if detected, could serve to predict the likelihood of downstream failure or performance degradation induced by product use or environmental stresses. This study explores the use of downstream factory test data or product field reliability data to infer data mining or pattern recognition criteria onto manufacturing process or upstream test data by means of support vector machines (SVM) in order to provide reliability prediction models. In concert with a risk/benefit analysis, these models can be utilized to drive improvement of the product or, at least, via screening to improve the reliability of the product delivered to the customer. Such models can be used to aid in reliability risk assessment based on detectable correlations between the product test performance and the sources of supply, test stands, or other factors related to product manufacture. As an enhancement to the usefulness of the SVM or hyperplane classifier within this context, L-moments and the Western Electric Company (WECO) Rules are used to augment or replace the native process or test data used as inputs to the classifier. As part of this research, a generalizable binary classification methodology was developed that can be used to design and implement predictors of end-item field failure or downstream product performance based on upstream test data that may be composed of single-parameter, time-series, or multivariate real-valued data. Additionally, the methodology provides input parameter weighting factors that have proved useful in failure analysis and root cause investigations as indicators of which of several upstream product parameters have the greater influence on the downstream failure outcomes.
ContributorsMosley, James (Author) / Morrell, Darryl (Committee member) / Cochran, Douglas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Roberts, Chell (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2011
149754-Thumbnail Image.png
Description
A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process

A good production schedule in a semiconductor back-end facility is critical for the on time delivery of customer orders. Compared to the front-end process that is dominated by re-entrant product flows, the back-end process is linear and therefore more suitable for scheduling. However, the production scheduling of the back-end process is still very difficult due to the wide product mix, large number of parallel machines, product family related setups, machine-product qualification, and weekly demand consisting of thousands of lots. In this research, a novel mixed-integer-linear-programming (MILP) model is proposed for the batch production scheduling of a semiconductor back-end facility. In the MILP formulation, the manufacturing process is modeled as a flexible flow line with bottleneck stages, unrelated parallel machines, product family related sequence-independent setups, and product-machine qualification considerations. However, this MILP formulation is difficult to solve for real size problem instances. In a semiconductor back-end facility, production scheduling usually needs to be done every day while considering updated demand forecast for a medium term planning horizon. Due to the limitation on the solvable size of the MILP model, a deterministic scheduling system (DSS), consisting of an optimizer and a scheduler, is proposed to provide sub-optimal solutions in a short time for real size problem instances. The optimizer generates a tentative production plan. Then the scheduler sequences each lot on each individual machine according to the tentative production plan and scheduling rules. Customized factory rules and additional resource constraints are included in the DSS, such as preventive maintenance schedule, setup crew availability, and carrier limitations. Small problem instances are randomly generated to compare the performances of the MILP model and the deterministic scheduling system. Then experimental design is applied to understand the behavior of the DSS and identify the best configuration of the DSS under different demand scenarios. Product-machine qualification decisions have long-term and significant impact on production scheduling. A robust product-machine qualification matrix is critical for meeting demand when demand quantity or mix varies. In the second part of this research, a stochastic mixed integer programming model is proposed to balance the tradeoff between current machine qualification costs and future backorder costs with uncertain demand. The L-shaped method and acceleration techniques are proposed to solve the stochastic model. Computational results are provided to compare the performance of different solution methods.
ContributorsFu, Mengying (Author) / Askin, Ronald G. (Thesis advisor) / Zhang, Muhong (Thesis advisor) / Fowler, John W (Committee member) / Pan, Rong (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2011
Description
Fiber-Wireless (FiWi) network is the future network configuration that uses optical fiber as backbone transmission media and enables wireless network for the end user. Our study focuses on the Dynamic Bandwidth Allocation (DBA) algorithm for EPON upstream transmission. DBA, if designed properly, can dramatically improve the packet transmission delay and

Fiber-Wireless (FiWi) network is the future network configuration that uses optical fiber as backbone transmission media and enables wireless network for the end user. Our study focuses on the Dynamic Bandwidth Allocation (DBA) algorithm for EPON upstream transmission. DBA, if designed properly, can dramatically improve the packet transmission delay and overall bandwidth utilization. With new DBA components coming out in research, a comprehensive study of DBA is conducted in this thesis, adding in Double Phase Polling coupled with novel Limited with Share credits Excess distribution method. By conducting a series simulation of DBAs using different components, we found out that grant sizing has the strongest impact on average packet delay and grant scheduling also has a significant impact on the average packet delay; grant scheduling has the strongest impact on the stability limit or maximum achievable channel utilization. Whereas the grant sizing only has a modest impact on the stability limit; the SPD grant scheduling policy in the Double Phase Polling scheduling framework coupled with Limited with Share credits Excess distribution grant sizing produced both the lowest average packet delay and the highest stability limit.
ContributorsZhao, Du (Author) / Reisslein, Martin (Thesis advisor) / McGarry, Michael (Committee member) / Fowler, John (Committee member) / Arizona State University (Publisher)
Created2011
148105-Thumbnail Image.png
Description

In this creative thesis project I use digital “scrolleytelling” (an interactive scroll-based storytelling) to investigate diversity & inclusion at big tech companies. I wanted to know why diversity numbers were flatlining at Facebook, Apple, Amazon, Microsoft and Google, and took a data journalism approach to explore the relationship between what

In this creative thesis project I use digital “scrolleytelling” (an interactive scroll-based storytelling) to investigate diversity & inclusion at big tech companies. I wanted to know why diversity numbers were flatlining at Facebook, Apple, Amazon, Microsoft and Google, and took a data journalism approach to explore the relationship between what corporations were saying versus what they were doing. Finally, I critiqued diversity and inclusion by giving examples of how the current way we are addressing D&I is not fixing the problem.

ContributorsBrust, Jiaying Eliza (Author) / Coleman, Grisha (Thesis director) / Tinapple, David (Committee member) / Arts, Media and Engineering Sch T (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148125-Thumbnail Image.png
Description

In recent years, advanced metrics have dominated the game of Major League Baseball. One such metric, the Pythagorean Win-Loss Formula, is commonly used by fans, reporters, analysts and teams alike to use a team’s runs scored and runs allowed to estimate their expected winning percentage. However, this method is not

In recent years, advanced metrics have dominated the game of Major League Baseball. One such metric, the Pythagorean Win-Loss Formula, is commonly used by fans, reporters, analysts and teams alike to use a team’s runs scored and runs allowed to estimate their expected winning percentage. However, this method is not perfect, and shows notable room for improvement. One such area that could be improved is its ability to be affected drastically by a single blowout game, a game in which one team significantly outscores their opponent.<br/>We hypothesize that meaningless runs scored in blowouts are harming the predictive power of Pythagorean Win-Loss and similar win expectancy statistics such as the Linear Formula for Baseball and BaseRuns. We developed a win probability-based cutoff approach that tallied the score of each game once a certain win probability threshold was passed, effectively removing those meaningless runs from a team’s season-long runs scored and runs allowed totals. These truncated totals were then inserted into the Pythagorean Win-Loss and Linear Formulas and tested against the base models.<br/>The preliminary results show that, while certain runs are more meaningful than others depending on the situation in which they are scored, the base models more accurately predicted future record than our truncated versions. For now, there is not enough evidence to either confirm or reject our hypothesis. In this paper, we suggest several potential improvement strategies for the results.<br/>At the end, we address how these results speak to the importance of responsibility and restraint when using advanced statistics within reporting.

ContributorsIversen, Joshua Allen (Author) / Satpathy, Asish (Thesis director) / Kurland, Brett (Committee member) / Department of Information Systems (Contributor) / Walter Cronkite School of Journalism and Mass Comm (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

A journalistic, first-person narrative going through the lessons learned from travel. The story is complemented by a series of photos from childhood to the present all uploaded to a Wix-based website.

Created2021-05
148044-Thumbnail Image.png
Description

Research has shown that being a female athlete in a male-dominated sports world is an oppressive burden, yet the experiences of being a black female athlete have been largely ignored. To combat this lack of attention, this paper invokes communication and feminist theorist Bell Hook's concept of moving black women

Research has shown that being a female athlete in a male-dominated sports world is an oppressive burden, yet the experiences of being a black female athlete have been largely ignored. To combat this lack of attention, this paper invokes communication and feminist theorist Bell Hook's concept of moving black women from margin to center to reveal the intersectional oppression of gender and racial narratives that they face in sports. By outlining the difference between white and black femininity and studying media portrayals of popular black female athletes such as Venus and Serena Williams and others, it becomes obvious how black women are typecast into certain social and athletic roles. This research also includes an auto-ethnographic component of my own experience as a black female lacrosse player at the NCAA Division I level. This component functions as a point of comparison and contrast of the ideas and concepts I discuss. Lastly, I offer recommendations and suggestions as to how to empower young black female athletes and retain them in a variety of sports. The goal of my thesis is to place special attention onto black women in an area which there is an extreme lack of representation. My own empirical research has led me to the conclusion that not only is such a discussion important, but it is absolutely necessary. If we are to fight back against hegemonic social structures such as racism and gender roles in the sports world, we must first understand what we are up against. My thesis gives us a glimpse into our imposing opponents, and I hope that future research continues this trend so that black female athletes like myself may one day be considered an athlete in the same sense that our white peers are.

ContributorsWright, Daniela Casselle (Author) / Edson, Belle (Thesis director) / Zanin, Alaina (Committee member) / Hugh Downs School of Human Communication (Contributor) / School of Social Transformation (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147983-Thumbnail Image.png
Description

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were being affected by COVID-19, it was obvious that their group was not immune to the issues the world was facing. Being stuck at home with little to do took a mental and physical toll on many kids. That is when EVOLVE Academy became an idea; our team wanted to create a fully online platform for children to help them practice and evolve their athletics skills, or simply spend part of their day performing a physical and health activity. Our team designed a solution that would benefit children, as well as parents that were struggling to find engaging activities for their kids while out of school. We quickly encountered issues that made it difficult for us to reach our target audience and make them believe and trust our platform. However, we persisted and tried to solve and answer the questions and problems that came along the way. Sadly, the same pandemic that opened the widow for EVOLVE Academy to exist, is now the reason people are walking away from it. Children want real interaction. They want to connect with other kids through more than just a screen. Although the priority of parents remains the safety and security of their kids, parents are also searching and opting for more “human” interactions, leaving EVOLVE Academy with little room to grow and succeed.

ContributorsParmenter, Taylor (Co-author) / Hernandez, Melany (Co-author) / Whitelocke, Kailas (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeff (Committee member) / Dean, W.P. Carey School of Business (Contributor, Contributor, Contributor) / Sandra Day O'Connor College of Law (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147984-Thumbnail Image.png
Description

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were being affected by COVID-19, it was obvious that their group was not immune to the issues the world was facing. Being stuck at home with little to do took a mental and physical toll on many kids. That is when EVOLVE Academy became an idea; our team wanted to create a fully online platform for children to help them practice and evolve their athletics skills, or simply spend part of their day performing a physical and health activity. Our team designed a solution that would benefit children, as well as parents that were struggling to find engaging activities for their kids while out of school. We quickly encountered issues that made it difficult for us to reach our target audience and make them believe and trust our platform. However, we persisted and tried to solve and answer the questions and problems that came along the way. Sadly, the same pandemic that opened the widow for EVOLVE Academy to exist, is now the reason people are walking away from it. Children want real interaction. They want to connect with other kids through more than just a screen. Although the priority of parents remains the safety and security of their kids, parents are also searching and opting for more “human” interactions, leaving EVOLVE Academy with little room to grow and succeed.

ContributorsHernandez, Melany (Co-author) / Parmenter, Taylor (Co-author) / Byrne, Jared (Thesis director) / Kunowski, Jeffrey (Committee member) / Lee, Christopher (Committee member) / Thunderbird School of Global Management (Contributor, Contributor) / School of Social and Behavioral Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147986-Thumbnail Image.png
Description

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were

In 2020, the world was swept by a global pandemic. It disrupted the lives of millions; many lost their jobs, students were forced to leave schools, and children were left with little to do while quarantined at their houses. Although the media outlets covered very little of how children were being affected by COVID-19, it was obvious that their group was not immune to the issues the world was facing. Being stuck at home with little to do took a mental and physical toll on many kids. That is when EVOLVE Academy became an idea; our team wanted to create a fully online platform for children to help them practice and evolve their athletics skills, or simply spend part of their day performing a physical and health activity. Our team designed a solution that would benefit children, as well as parents that were struggling to find engaging activities for their kids while out of school. We quickly encountered issues that made it difficult for us to reach our target audience and make them believe and trust our platform. However, we persisted and tried to solve and answer the questions and problems that came along the way. Sadly, the same pandemic that opened the widow for EVOLVE Academy to exist, is now the reason people are walking away from it. Children want real interaction. They want to connect with other kids through more than just a screen. Although the priority of parents remains the safety and security of their kids, parents are also searching and opting for more “human” interactions, leaving EVOLVE Academy with little room to grow and succeed.

ContributorsWhitelocke, Kailas N (Co-author) / Hernandez, Melany (Co-author) / Parmenter, Taylor (Co-author) / Byrne, Jared (Thesis director) / Lee, Christopher (Committee member) / Kunowski, Jeff (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05