This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

134068-Thumbnail Image.png
Description
The frontostriatal reward circuit serves an underlying role in reward processing, cognitive planning, and motor control in the context of achieving a goal. Furthermore, research suggests a relationship between the reward circuits and behavior expressed in Attention Deficit Hyperactivity Disorder (ADHD); however, the specific structural differences of the reward circuits

The frontostriatal reward circuit serves an underlying role in reward processing, cognitive planning, and motor control in the context of achieving a goal. Furthermore, research suggests a relationship between the reward circuits and behavior expressed in Attention Deficit Hyperactivity Disorder (ADHD); however, the specific structural differences of the reward circuits in those with ADHD remain ambiguous. Diffusion tensor imaging (DTI) techniques were used to analyze diffusion weighted magnetic resonance imaging (DWI) data in order to examine the structural connectivity of frontostriatal reward pathways in ADHD adolescents compared to typically developing (TD) adolescents. It was hypothesized that measures of impulsivity would be predicted by white matter tract integrity measures in frontostriatal tracts related to affective processing (ventromedial prefrontal cortex to ventral striatum, vmPFC) in adolescents with ADHD, and that there would be reduced tract integrity in tracts related to executive control (dorsolateral prefrontal and anterior cingulate cortex—dlPFC and ACC, respectively). Frontostriatal tracts as well as the hippocampus and amygdala were examined in relation to age and impulsivity using both correlation and regression models. Results indicated that impulsivity declined with age in the TD group while no significant trend was identified for the ADHD group. The hypotheses were not supported and results for both predictions on the affective and executive circuits showed opposite trends from what was expected.
ContributorsHarrison, Sydney Rae (Author) / McClure, Samuel (Thesis director) / Brewer, Gene (Committee member) / Davis, Mary (Committee member) / Department of Psychology (Contributor) / Barrett, The Honors College (Contributor)
Created2017-12
132118-Thumbnail Image.png
Description
Purpose: Children with attention-deficit/hyperactivity disorder (ADHD) have been found to have central executive deficits in working memory as well as less academic success than children with typical development. The purpose of this study was to determine which components of central executive function were most closely related to parental rating scores

Purpose: Children with attention-deficit/hyperactivity disorder (ADHD) have been found to have central executive deficits in working memory as well as less academic success than children with typical development. The purpose of this study was to determine which components of central executive function were most closely related to parental rating scores of attention.
Method: Two hundred twenty three 2nd graders with typical development, dyslexia, developmental language disorder (DLD), or dyslexia/DLD completed three central executive tasks from the Comprehensive Assessment Battery for Children–Working Memory (Gray, Alt, Hogan, Green, & Cowan, n.d.). Parents of the children completed the ADHD Rating Scale-IV: Home Version for their child. None of the participants had been diagnosed with ADD/ADHD
Results: When diagnostic group performance was compared we found significant differences on each central executive task. When ADHD group performance was compared we found a significant between-group performance only on the n-back visual task with the high-risk group scoring lower than the other two groups. ADHD rating scores predicted a significant amount of variance for each central executive task, but percentages were small (3%-6%).
Discussion: Working memory is known to be related to attention control. Stronger attentional control is associated with a higher working memory performance. Our study showed that children most at risk for ADD/ADHD based on parent ratings scored lowest on the visuospatial task, likely because rehearsal of visuospatial information is not possible so relies more heavily on attention. This study is a step toward considering how attention affects working memory performance so that both can be considered when designing instruction and interventions.
ContributorsCleveland, Alexandra (Author) / Gray, Shelley (Thesis director) / Azuma, Tamiko (Committee member) / College of Health Solutions (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12