This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

150874-Thumbnail Image.png
Description
A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction

A dual chamber molecular beam epitaxy (MBE) system was rebuilt for the growth of 6.1 Angstrom II-VI and III-V compound semiconductor materials that are to be used in novel optoelectronic devices that take advantage of the nearly continuous bandgap availability between 0 eV and 3.4 eV. These devices include multijunction solar cells and multicolor detectors. The MBE system upgrade involved the conversion of a former III-V chamber for II-VI growth. This required intensive cleaning of the chamber and components to prevent contamination. Special features including valved II-VI sources and the addition of a cold trap allowed for the full system to be baked to 200 degrees Celsius to improve vacuum conditions and reduce background impurity concentrations in epilayers. After the conversion, the system was carefully calibrated and optimized for the growth of ZnSe and ZnTe on GaAs (001) substrates. Material quality was assessed using X-ray diffraction rocking curves. ZnSe layers displayed a trend of improving quality with decreasing growth temperature reaching a minimum full-width half-maximum (FWHM) of 113 arcsec at 278 degrees Celsius. ZnTe epilayer quality increased with growth temperature under Zn rich conditions attaining a FWHM of 84 arcsec at 440 degrees Celsius. RHEED oscillations were successfully observed and used to obtain growth rate in situ for varying flux and temperature levels. For a fixed flux ratio, growth rate decreased with growth temperature as the desorption rate increased. A directly proportional dependence of growth rate on Te flux was observed for Zn rich growth. Furthermore, a method for determining the flux ratio necessary for attaining the stoichiometric condition was demonstrated.
ContributorsDettlaff, W. Hank G (Author) / Zhang, Yong-Hang (Thesis advisor) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2012
155906-Thumbnail Image.png
Description
Light Emitting Diodes even with their longer life, robust build and low power consumption, they are still plagued by some problems the most significant of which are the current droop and thermal droop. Current droop causes a lowering in the Internal Quantum Efficiency with increased current injection while thermal droo

Light Emitting Diodes even with their longer life, robust build and low power consumption, they are still plagued by some problems the most significant of which are the current droop and thermal droop. Current droop causes a lowering in the Internal Quantum Efficiency with increased current injection while thermal droop lowers the whole Internal Quantum Efficiency curve with increase in temperature. The focus here was understanding effects of thermal droop and develop a method to control it.

Shockley Read Hall recombination plays a dominant role in the thermal droop effect when the current injection is low. Since the blue light emitting diode is based on Gallium Nitride, we need to take into consideration the effect of piezoelectric polarization in the quantum wells. The effects of the piezoelectric fields were studied based on the Gallium Nitride plane orientations. It was found in a Gallium Nitride light emitting diodes simulation study that more the number of quantum wells, lower would be the Radiative recombination rate. The problem of exacerbated spatial separation of electron hole wavefunctions in a thick single quantum well structure lead to the development of a dual well structure where one well assisted the other during high temperature operations. The Electron Blocking Layer was reduced in thickness and was made only 10 nm thick with a 5 nm Gallium Nitride buffer between it and the active region wells. The main reason for reducing the electron blocking layer thickness was to reduce the valance band offset and improve hole transport into the active region. Three different dual well designs were simulated of 3nm, 6nm and 9nm wide wells. The output parameters like the Power Spectral Density, Electron bound density, Light Output Power and Electron-Hole wavefunction overlaps were calculated. It was found that one of the wells acted as an assisting well where it had very little radiative recombination activity in it at room temperature.

As the temperature increased, it was observed that the electrons in the main well started to overflow out of it and into the assisting well where the radiative recombination rate increased significantly. This lead to a boost in Internal Quantum Efficiency.
ContributorsDas, Shiladitya (Author) / Zhao, Yuji (Thesis advisor) / Vasileska, Dragica (Committee member) / Ning, Cun-Zheng (Committee member) / Arizona State University (Publisher)
Created2017
155558-Thumbnail Image.png
Description
Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of

Polycrystalline CdS/CdTe solar cells continue to dominate the thin-film photovoltaics industry with an achieved record efficiency of over 22% demonstrated by First Solar, yet monocrystalline CdTe devices have received considerably less attention over the years. Monocrystalline CdTe double-heterostructure solar cells show great promise with respect to addressing the problem of low Voc with the passing of the 1 V benchmark. Rapid progress has been made in driving the efficiency in these devices ever closer to the record presently held by polycrystalline thin-films. This achievement is primarily due to the utilization of a remote p-n heterojunction in which the heavily doped contact materials, which are so problematic in terms of increasing non-radiative recombination inside the absorber, are moved outside of the CdTe double heterostructure with two MgyCd1-yTe barrier layers to provide confinement and passivation at the CdTe surfaces. Using this design, the pursuit and demonstration of efficiencies beyond 20% in CdTe solar cells is reported through the study and optimization of the structure barriers, contacts layers, and optical design. Further development of a wider bandgap MgxCd1-xTe solar cell based on the same design is included with the intention of applying this knowledge to the development of a tandem solar cell constructed on a silicon subcell. The exploration of different hole-contact materials—ZnTe, CuZnS, and a-Si:H—and their optimization is presented throughout the work. Devices utilizing a-Si:H hole contacts exhibit open-circuit voltages of up to 1.11 V, a maximum total-area efficiency of 18.5% measured under AM1.5G, and an active-area efficiency of 20.3% for CdTe absorber based devices. The achievement of voltages beyond 1.1V while still maintaining relatively high fill factors with no rollover, either before or after open-circuit, is a promising indicator that this approach can result in devices surpassing the 22% record set by polycrystalline designs. MgxCd1-xTe absorber based devices have been demonstrated with open-circuit voltages of up to 1.176 V and a maximum active-area efficiency of 11.2%. A discussion of the various loss mechanisms present within these devices, both optical and electrical, concludes with the presentation of a series of potential design changes meant to address these issues.
ContributorsBecker, Jacob J (Author) / Zhang, Yong-Hang (Thesis advisor) / Bertoni, Mariana (Committee member) / Vasileska, Dragica (Committee member) / Johnson, Shane (Committee member) / Arizona State University (Publisher)
Created2017
158605-Thumbnail Image.png
Description
Advanced and mature computer simulation methods exist in fluid dynamics, elec-

tromagnetics, semiconductors, chemical transport, and even chemical and material

electronic structure. However, few general or accurate methods have been developed

for quantum photonic devices. Here, a novel approach utilizing phase-space quantum

mechanics is developed to model photon transport in ring resonators, a form

Advanced and mature computer simulation methods exist in fluid dynamics, elec-

tromagnetics, semiconductors, chemical transport, and even chemical and material

electronic structure. However, few general or accurate methods have been developed

for quantum photonic devices. Here, a novel approach utilizing phase-space quantum

mechanics is developed to model photon transport in ring resonators, a form of en-

tangled pair source. The key features the model needs to illustrate are the emergence

of non-classicality and entanglement between photons due to nonlinear effects in the

ring. The quantum trajectory method is subsequently demonstrated on a sequence

of elementary models and multiple aspects of the ring resonator itself.
ContributorsWelland, Ian Matthew (Author) / Ferry, David K. (Thesis advisor) / Goodnick, Stephen (Thesis advisor) / Zhao, Yuji (Committee member) / Vasileska, Dragica (Committee member) / Arizona State University (Publisher)
Created2020