This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 7 of 7
Filtering by

Clear all filters

151898-Thumbnail Image.png
Description
The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum

The thesis studies new methods to fabricate optoelectronic Ge1-ySny/Si(100) alloys and investigate their photoluminescence (PL) properties for possible applications in Si-based photonics including IR lasers. The work initially investigated the origin of the difference between the PL spectrum of bulk Ge, dominated by indirect gap emission, and the PL spectrum of Ge-on-Si films, dominated by direct gap emission. It was found that the difference is due to the supression of self-absorption effects in Ge films, combined with a deviation from quasi-equilibrium conditions in the conduction band of undoped films. The latter is confirmed by a model suggesting that the deviation is caused by the shorter recombination lifetime in the films relative to bulk Ge. The knowledge acquired from this work was then utilized to study the PL properties of n-type Ge1-ySny/Si (y=0.004-0.04) samples grown via chemical vapor deposition of Ge2H6/SnD4/P(GeH3)3. It was found that the emission intensity (I) of these samples is at least 10x stronger than observed in un-doped counterparts and that the Idir/Iind ratio of direct over indirect gap emission increases for high-Sn contents due to the reduced gamma-L valley separation, as expected. Next the PL investigation was expanded to samples with y=0.05-0.09 grown via a new method using the more reactive Ge3H8 in place of Ge2H6. Optical quality, 1-um thick Ge1-ySny/Si(100) layers were produced using Ge3H10/SnD4 and found to exhibit strong, tunable PL near the threshold of the direct-indirect bandgap crossover. A byproduct of this study was the development of an enhanced process to produce Ge3H8, Ge4H10, and Ge5H12 analogs for application in ultra-low temperature deposition of Group-IV semiconductors. The thesis also studies synthesis routes of an entirely new class of semiconductor compounds and alloys described by Si5-2y(III-V)y (III=Al, V= As, P) comprising of specifically designed diamond-like structures based on a Si parent lattice incorporating isolated III-V units. The common theme of the two thesis topics is the development of new mono-crystalline materials on ubiquitous silicon platforms with the objective of enhancing the optoelectronic performance of Si and Ge semiconductors, potentially leading to the design of next generation optical devices including lasers, detectors and solar cells.
ContributorsGrzybowski, Gordon (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2013
153104-Thumbnail Image.png
Description
Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in

Group III-nitride semiconductors have been commercially used in the fabrication of light-emitting diodes and laser diodes, covering the ultraviolet-visible-infrared spectral range and exhibit unique properties suitable for modern optoelectronic applications. InGaN ternary alloys have energy band gaps ranging from 0.7 to 3.4 eV. It has a great potential in the application for high efficient solar cells. AlGaN ternary alloys have energy band gaps ranging from 3.4 to 6.2 eV. These alloys have a great potential in the application of deep ultra violet laser diodes. However, there are still many issues with these materials that remain to be solved. In this dissertation, several issues concerning structural, electronic, and optical properties of III-nitrides have been investigated using transmission electron microscopy. First, the microstructure of InxGa1-xN (x = 0.22, 0.46, 0.60, and 0.67) films grown by metal-modulated epitaxy on GaN buffer /sapphire substrates is studied. The effect of indium composition on the structure of InGaN films and strain relaxation is carefully analyzed. High luminescence intensity, low defect density, and uniform full misfit strain relaxation are observed for x = 0.67. Second, the properties of high-indium-content InGaN thin films using a new molecular beam epitaxy method have been studied for applications in solar cell technologies. This method uses a high quality AlN buffer with large lattice mismatch that results in a critical thickness below one lattice parameter. Finally, the effect of different substrates and number of gallium sources on the microstructure of AlGaN-based deep ultraviolet laser has been studied. It is found that defects in epitaxial layer are greatly reduced when the structure is deposited on a single crystal AlN substrate. Two gallium sources in the growth of multiple quantum wells active region are found to cause a significant improvement in the quality of quantum well structures.
ContributorsWei, Yong (Author) / Ponce, Fernando (Thesis advisor) / Chizmeshya, Andrew (Committee member) / McCartney, Martha (Committee member) / Menéndez, Jose (Committee member) / Yu, Hongbin (Committee member) / Arizona State University (Publisher)
Created2014
154156-Thumbnail Image.png
Description
Group-IV semiconductor alloys are of interest for Si-integrated optoelectronic applications due to the band gap tunability and enhanced optical capabilities that can be achieved through compositional tuning. This work advances the field by presenting a systematic study of the optical and electronic properties of Ge1-ySny and analogous Ge1-x-ySixSny alloys.

The

Group-IV semiconductor alloys are of interest for Si-integrated optoelectronic applications due to the band gap tunability and enhanced optical capabilities that can be achieved through compositional tuning. This work advances the field by presenting a systematic study of the optical and electronic properties of Ge1-ySny and analogous Ge1-x-ySixSny alloys.

The fundamental direct and indirect band gaps of Ge1-ySny materials are measured by room temperature photoluminescence in samples containing 0 ≤ y ≤ 0.11 and a transition to direct gap materials is found to occur at yc = 0.087. This result is enabled by the development of sample growth and processing protocols that produce high-quality materials epitaxially on Ge-buffered Si(100) substrates. Strategies to optimize the optical performance are explored by varying the film thickness, thermal and surface treatments, and n-type doping. The electrical and optical properties of diodes based on these materials are characterized by current-voltage, optical responsivity, and electroluminescence measurements. These show improved optical performance near yc with tunable emission out to 2500 nm. Measuring the carrier lifetimes in devices with strain relaxed and fully strained interfaces show significantly longer lifetimes in the fully strained case.

The direct and indirect band gaps of Sn-rich (y > x) Ge1-x-ySixSny materials are measured by room temperature photoluminescence on optimized samples. These data confirm a transition to direct gap materials occurs for the ternary alloy as well. Devices based on compositions 0.02 ≤ x ≤ 0.10 and 0.03 ≤ y ≤ 0.11 are characterized by current-voltage, optical responsivity, and electroluminescence measurements and show competitive performance with analogous devices based on Ge1-ySny materials. A detailed study of the direct gap in Ge1-xSix alloys gives parameters crucial en route to a global description of the Ge1-x-ySixSny fundamental band gaps.

Archetypal laser device designs on Si are explored by fabricating degenerate pn junction diodes and highly doped waveguide devices based on high-quality Ge1-ySny materials. The diodes showed tunnel-like current-voltage characteristics and tailored electroluminescence based on the doping profile. The waveguides demonstrate emission under optical stimulation.
ContributorsGallagher, James Dennis (Author) / Menéndez, Jose (Thesis advisor) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2015
154906-Thumbnail Image.png
Description
Nanoscale semiconductors with their unique properties and potential applications have been a focus of extensive research in recent years. There are many ways in which semiconductors change the world with computers, cell phones, and solar panels, and nanoscale semiconductors having a promising potential to expand the efficiency, reduce the cost,

Nanoscale semiconductors with their unique properties and potential applications have been a focus of extensive research in recent years. There are many ways in which semiconductors change the world with computers, cell phones, and solar panels, and nanoscale semiconductors having a promising potential to expand the efficiency, reduce the cost, and improve the flexibility and durability of their design. In this study, theoretical quantum mechanical simulations were performed on several different nanoscale semiconductor materials, including graphene/phosphorene nanoribbons and group III-V nanowires. First principles density functional theory (DFT) was used to study the electronic and structural properties of these nanomaterials in their fully relaxed and strained states. The electronic band gap, effective masses of charge carriers, electronic orbitals, and density of states were most commonly examined with strain, both from intrinsic and external sources. For example, armchair graphene nanoribbons (AGNR) were found to have unprecedented band gap-strain dependence. Phosphorene nanoribbons (PNRs) demonstrate a different behavior, including a chemical scissors effect, and studies revealed a strong relationship between passivation species and band gap tunability. Unlike the super mechanical flexibility of AGNRs and PNRs which can sustain incredible strain, modest yet large strain was applied to group III-V nanowires such as GaAs/InAs. The calculations showed that a direct and indirect band gap transition occurs at some critical strains and the origination of these gap transitions were explored in detail. In addition to the pure nanowires, GaAs/InAs core/shell heterostructure nanowires were also studied. Due to the lattice mismatch between GaAs and InAs, the intrinsic strain in the core/shell nanowires demonstrates an interesting behavior on tuning the electronic properties. This interesting behavior suggests a mechanical way to exert compressive strain on nanowires experimentally, and can create a finite quantum confinement effect on the core.
ContributorsCopple, Andrew (Author) / Peng, Xihong (Thesis advisor) / Chan, Candace (Committee member) / Chizmeshya, Andrew (Committee member) / Ponce, Fernando (Committee member) / Arizona State University (Publisher)
Created2016
154907-Thumbnail Image.png
Description
Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via molecular epitaxy of Ge5H12. Next, As(GeH3)3, As(SiH3)3, SbD3, S(GeH3)2 and S(SiH3)2 molecular sources were utilized in degenerate n-type doping of

Optoelectronic and microelectronic applications of germanium-based materials have received considerable research interest in recent years. A novel method for Ge on Si heteroepitaxy required for such applications was developed via molecular epitaxy of Ge5H12. Next, As(GeH3)3, As(SiH3)3, SbD3, S(GeH3)2 and S(SiH3)2 molecular sources were utilized in degenerate n-type doping of Ge. The epitaxial Ge films produced in this work incorporate donor atoms at concentrations above the thermodynamic equilibrium limits. The donors are nearly fully activated, and led to films with lowest resistivity values thus far reported.

Band engineering of Ge was achieved by alloying with Sn. Epitaxy of the alloy layers was conducted on virtual Ge substrates, and made use of the germanium hydrides Ge2H6 and Ge3H8, and the Sn source SnD4. These films exhibit stronger emission than equivalent material deposited directly on Si, and the contributions from the direct and indirect edges can be separated. The indirect-direct crossover composition for Ge1-ySny alloys was determined by photoluminescence (PL). By n-type doping of the Ge1-ySny alloys via P(GeH3)3, P(SiH3)3 and As(SiH3)3, it was possible to enhance photoexcited emission by more than an order-of-magnitude.

The above techniques for deposition of direct gap Ge1-ySny alloys and doping of Ge were combined with p-type doping methods for Ge1-ySny using B2H6 to fabricate pin heterostructure diodes with active layer compositions up to y=0.137. These represent the first direct gap light emitting diodes made from group IV materials. The effect of the single defected n-i¬ interface in a n-Ge/i-Ge1-ySny/p-Ge1-zSnz architecture on electroluminescence (EL) was studied. This led to lattice engineering of the n-type contact layer to produce diodes of n-Ge1-xSnx/i-Ge1-ySny/p-Ge1-zSnz architecture which are devoid of interface defects and therefore exhibit more efficient EL than the previous design. Finally, n-Ge1-ySny/p-Ge1-zSnz pn junction devices were synthesized with varying composition and doping parameters to investigate the effect of these properties on EL.
ContributorsSenaratne, Charutha Lasitha (Author) / Kouvetakis, John (Thesis advisor) / Chizmeshya, Andrew (Committee member) / Menéndez, Jose (Committee member) / Arizona State University (Publisher)
Created2016
191501-Thumbnail Image.png
Description
Diamond transistors are promising as high-power and high-frequency devices having higher efficiencies than conventional transistors. Diamond possesses superior electronic properties, such as a high bandgap (5.47 eV), high breakdown voltage (>10 MV cm−1 ), high electron and hole mobilities [4500 and 3800 cm2 V−1 · s−1, respectively], high electron

Diamond transistors are promising as high-power and high-frequency devices having higher efficiencies than conventional transistors. Diamond possesses superior electronic properties, such as a high bandgap (5.47 eV), high breakdown voltage (>10 MV cm−1 ), high electron and hole mobilities [4500 and 3800 cm2 V−1 · s−1, respectively], high electron and hole saturation velocities (1.5 × 107 and 1.05 × 107 cm s−1, respectively), and high thermal conductivity [22 W cm−1 · K−1], compared to conventional semiconductors. Reportedly, the diamond field-effect transistors (FETs) have shown transition frequencies (fT) of 45 and 70 GHz, maximum oscillation frequency (fmax) of 120 GHz, and radiofrequency (RF) power densities of 2.1 and 3.8 W mm−1 at 1 GHz. A two-dimensional-hole-gas (2DHG) surface channel forms on H-diamond by transfer doping from adsorbates/dielectrics in contact with H-diamond surface. However, prior studies indicate that charge transfer at the dielectric/ H-diamond interface could result in relatively low mobility attributed to interface scattering from the transferred negative charge to acceptor region. H-terminated diamond exhibits a negative electron affinity (NEA) of -1.1 to -1.3 eV, which is crucial to enable charge transfer doping. To overcome these limitations modulation doping, that is, selective doping, that leads to spatial separation of the MoO3 acceptor layer from the hole channel on H-diamond has been proposed. Molybdenum oxide (MoO3) was used as dielectric as it has electron affinity of 5.9eV and could align its conduction band minimum (CBM) below the valence band maximum (VBM) of H-terminated diamond. The band alignment provides the driving potential for charge transfer. Hafnium oxide (HfO2) was used as interfacial layer since it is a high-k oxide insulator (∼25), having large Eg (5.6 eV), high critical breakdown field, and high thermal stability. This study presents photoemission measurements of the electronic band alignments of the MoO3/HfO2/H-diamond layer structure to gain insight into the driving potential for the negative charge transfer and the location of the negative charges near the interface, in the HfO2 layer or in the MoO3 layer. The diamond hole concentration, mobility, and sheet resistance were characterized for MoO3/HfO2/H-Diamond with HfO2 layers of 0, 2 and 4 nm thickness.
ContributorsDeshmukh, Aditya Vilasrao (Author) / Nemanich, Robert J. (Thesis advisor) / Alford, Terry (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2024
161443-Thumbnail Image.png
Description
Wide bandgap semiconductors are of much current interest due to their superior electrical properties. This dissertation describes electron microscopy characterization of GaN-on-GaN structures for high-power vertical device applications. Unintentionally-doped (UID) GaN layers grown homoepitaxially via metal-organic chemical vapor deposition on freestanding GaN substrates, were subjected to dry etching, and layers

Wide bandgap semiconductors are of much current interest due to their superior electrical properties. This dissertation describes electron microscopy characterization of GaN-on-GaN structures for high-power vertical device applications. Unintentionally-doped (UID) GaN layers grown homoepitaxially via metal-organic chemical vapor deposition on freestanding GaN substrates, were subjected to dry etching, and layers of UID-GaN/p-GaN were over-grown. The as-grown and regrown heterostructures were examined in cross-section using transmission electron microscopy (TEM). Two different etching treatments, fast-etch-only and multiple etches with decreasing power, were employed. The fast-etch-only devices showed GaN-on-GaN interface at etched location, and low device breakdown voltages were measured (~ 45-95V). In comparison, no interfaces were visible after multiple etching steps, and the corresponding breakdown voltages were much higher (~1200-1270V). These results emphasized importance of optimizing surface etching techniques for avoiding degraded device performance. The morphology of GaN-on-GaN devices after reverse-bias electrical stressing to breakdown was investigated. All failed devices had irreversible structural damage, showing large surface craters (~15-35 microns deep) with lengthy surface cracks. Cross-sectional TEM of failed devices showed high densities of threading dislocations (TDs) around the cracks and near crater surfaces. Progressive ion-milling across damaged devices revealed high densities of TDs and the presence of voids beneath cracks: these features were not observed in unstressed devices. The morphology of GaN substrates grown by hydride vapor-phase epitaxy (HVPE) and by ammonothermal methods were correlated with reverse-bias results. HVPE substrates showed arrays of surface features when observed by X-ray topography (XRT). All fabricated devices that overlapped with these features had typical reverse-bias voltages less than 100V at a leakage current limit of 10-6 A. In contrast, devices not overlapping with such features reached voltages greater than 300V. After etching, HVPE substrate surfaces showed defect clusters and macro-pits, whereas XRT images of ammonothermal substrate revealed no visible features. However, some devices fabricated on ammonothermal substrate failed at low voltages. Devices on HVPE and ammonothermal substrates with low breakdown voltages showed crater-like surface damage and revealed TDs (~25µm deep) and voids; such features were not observed in devices reaching higher voltages. These results should assist in developing protocols to fabricate reliable high-voltage devices.
ContributorsPeri, Prudhvi Ram (Author) / Smith, David J. (Thesis advisor) / Alford, Terry (Committee member) / Mccartney, Martha R (Committee member) / Nemanich, Robert (Committee member) / Zhao, Yuji (Committee member) / Arizona State University (Publisher)
Created2021