This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153394-Thumbnail Image.png
Description
As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a

As a promising solution to the problem of acquiring and storing large amounts of image and video data, spatial-multiplexing camera architectures have received lot of attention in the recent past. Such architectures have the attractive feature of combining a two-step process of acquisition and compression of pixel measurements in a conventional camera, into a single step. A popular variant is the single-pixel camera that obtains measurements of the scene using a pseudo-random measurement matrix. Advances in compressive sensing (CS) theory in the past decade have supplied the tools that, in theory, allow near-perfect reconstruction of an image from these measurements even for sub-Nyquist sampling rates. However, current state-of-the-art reconstruction algorithms suffer from two drawbacks -- They are (1) computationally very expensive and (2) incapable of yielding high fidelity reconstructions for high compression ratios. In computer vision, the final goal is usually to perform an inference task using the images acquired and not signal recovery. With this motivation, this thesis considers the possibility of inference directly from compressed measurements, thereby obviating the need to use expensive reconstruction algorithms. It is often the case that non-linear features are used for inference tasks in computer vision. However, currently, it is unclear how to extract such features from compressed measurements. Instead, using the theoretical basis provided by the Johnson-Lindenstrauss lemma, discriminative features using smashed correlation filters are derived and it is shown that it is indeed possible to perform reconstruction-free inference at high compression ratios with only a marginal loss in accuracy. As a specific inference problem in computer vision, face recognition is considered, mainly beyond the visible spectrum such as in the short wave infra-red region (SWIR), where sensors are expensive.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2015
157840-Thumbnail Image.png
Description
Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is

Over the last decade, deep neural networks also known as deep learning, combined with large databases and specialized hardware for computation, have made major strides in important areas such as computer vision, computational imaging and natural language processing. However, such frameworks currently suffer from some drawbacks. For example, it is generally not clear how the architectures are to be designed for different applications, or how the neural networks behave under different input perturbations and it is not easy to make the internal representations and parameters more interpretable. In this dissertation, I propose building constraints into feature maps, parameters and and design of algorithms involving neural networks for applications in low-level vision problems such as compressive imaging and multi-spectral image fusion, and high-level inference problems including activity and face recognition. Depending on the application, such constraints can be used to design architectures which are invariant/robust to certain nuisance factors, more efficient and, in some cases, more interpretable. Through extensive experiments on real-world datasets, I demonstrate these advantages of the proposed methods over conventional frameworks.
ContributorsLohit, Suhas Anand (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2019
158817-Thumbnail Image.png
Description
Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units.

Over the past decade, machine learning research has made great strides and significant impact in several fields. Its success is greatly attributed to the development of effective machine learning algorithms like deep neural networks (a.k.a. deep learning), availability of large-scale databases and access to specialized hardware like Graphic Processing Units. When designing and training machine learning systems, researchers often assume access to large quantities of data that capture different possible variations. Variations in the data is needed to incorporate desired invariance and robustness properties in the machine learning system, especially in the case of deep learning algorithms. However, it is very difficult to gather such data in a real-world setting. For example, in certain medical/healthcare applications, it is very challenging to have access to data from all possible scenarios or with the necessary amount of variations as required to train the system. Additionally, the over-parameterized and unconstrained nature of deep neural networks can cause them to be poorly trained and in many cases over-confident which, in turn, can hamper their reliability and generalizability. This dissertation is a compendium of my research efforts to address the above challenges. I propose building invariant feature representations by wedding concepts from topological data analysis and Riemannian geometry, that automatically incorporate the desired invariance properties for different computer vision applications. I discuss how deep learning can be used to address some of the common challenges faced when working with topological data analysis methods. I describe alternative learning strategies based on unsupervised learning and transfer learning to address issues like dataset shifts and limited training data. Finally, I discuss my preliminary work on applying simple orthogonal constraints on deep learning feature representations to help develop more reliable and better calibrated models.
ContributorsSom, Anirudh (Author) / Turaga, Pavan (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2020