This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

158636-Thumbnail Image.png
Description
According to the Center for Disease Control and Prevention report around 29,668 United States residents aged greater than 65 years had died as a result of a fall in 2016. Other injuries like wrist fractures, hip fractures, and head injuries occur as a result of a fall. Certain groups of

According to the Center for Disease Control and Prevention report around 29,668 United States residents aged greater than 65 years had died as a result of a fall in 2016. Other injuries like wrist fractures, hip fractures, and head injuries occur as a result of a fall. Certain groups of people are more prone to experience falls than others, one of which being individuals with stroke. The two most common issues with individuals with strokes are ankle weakness and foot drop, both of which contribute to falls. To mitigate this issue, the most popular clinical remedy given to these users is thermoplastic Ankle Foot Orthosis. These AFO's help improving gait velocity, stride length, and cadence. However, studies have shown that a continuous restraint on the ankle harms the compensatory stepping response and forward propulsion. It has been shown in previous studies that compensatory stepping and forward propulsion are crucial for the user's ability to recover from postural perturbations. Hence, there is a need for active devices that can supply a plantarflexion during the push-off and dorsiflexion during the swing phase of gait. Although advancements in the orthotic research have shown major improvements in supporting the ankle joint for rehabilitation, there is a lack of available active devices that can help impaired users in daily activities. In this study, our primary focus is to build an unobtrusive, cost-effective, and easy to wear active device for gait rehabilitation and fall prevention in individuals who are at risk. The device will be using a double-acting cylinder that can be easily incorporated into the user's footwear using a novel custom-designed powered ankle brace. The device will use Inertial Measurement Units to measure kinematic parameters of the lower body and a custom control algorithm to actuate the device based on the measurements. The study can be used to advance the field of gait assistance, rehabilitation, and potentially fall prevention of individuals with lower-limb impairments through the use of Active Ankle Foot Orthosis.
ContributorsRay, Sambarta (Author) / Honeycutt, Claire (Thesis advisor) / Dasarathy, Gautam (Thesis advisor) / Redkar, Sangram (Committee member) / Jayasuriya, Suren (Committee member) / Arizona State University (Publisher)
Created2020
161316-Thumbnail Image.png
Description
This research seeks to present the design and testing of exoskeletons capable of assisting with walking gait, squatting, and fall prevention activities. The dissertation introduces wearable robotics and exoskeletons and then progresses into specific applications and developments in the targeted field. Following the introduction, chapters present and discuss different wearable

This research seeks to present the design and testing of exoskeletons capable of assisting with walking gait, squatting, and fall prevention activities. The dissertation introduces wearable robotics and exoskeletons and then progresses into specific applications and developments in the targeted field. Following the introduction, chapters present and discuss different wearable exoskeletons built to address known issues with workers and individuals with increased risk of fall. The presentation is concluded by an overall analysis of the resulting developments and identifying future work in the field.
ContributorsOlson, Jason Stewart (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas (Committee member) / Honeycutt, Claire (Committee member) / Arizona State University (Publisher)
Created2021
168588-Thumbnail Image.png
Description
Mechanical impedance is a concept that is used to model biomechanical propertiesof human joints. These models can then be utilized to provide insight into the inner workings of the human neuromuscular system or to provide insight into how to best design controllers for robotic applications that either attempt to mimic capabilities of the

Mechanical impedance is a concept that is used to model biomechanical propertiesof human joints. These models can then be utilized to provide insight into the inner workings of the human neuromuscular system or to provide insight into how to best design controllers for robotic applications that either attempt to mimic capabilities of the human neuromuscular system or physically interact with it. To further elucidate patterns and properties of how the human neuromuscular system modulates mechanical impedance at the human ankle joint, multiple studies were conducted. The first study was to assess the ability of linear regression models to characterize the change in stiffness - a component of mechanical impedance - seen at the human ankle during the stance phase of walking in the Dorsiflexion-Plantarflexion (DP) direction. A collection of biomechanical variables were used as input variables. The R^2 value of the best performing model was 0.71. The second and third studies were performed to showcase the ability of a newly developed twin dual-axis platform, which goes beyond the limits of a single dual-axis platform, to quantify bilateral stiffness properties. The second study quantified the bilateral mechanical stiffness of the human ankle joint for healthy able-bodied subjects during the stance phase of walking and during quiet standing in both the DP and inversion-eversion directions. Subjects showed a high level of subject specific symmetry. Lastly, a similar bilateral ankle characterization study was conducted on a set of subjects with multiple sclerosis, but only during quiet standing and in the DP direction. Results showed a high level of discrepancy between the subject’s most-affected and least-affected limbs with a larger range and variance than in the healthy population.
ContributorsRussell, Joshua (Author) / Lee, Hyunglae (Thesis advisor) / Honeycutt, Claire (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2022