This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description

This thesis proposes a new steering system for agricultural machinery with the aim of improving the automation capabilities of farming robots. Accurate and reliable autonomous machinery has the potential to provide significant benefits to the efficiency of farming operations, but the existing systems for performing one of the most essential

This thesis proposes a new steering system for agricultural machinery with the aim of improving the automation capabilities of farming robots. Accurate and reliable autonomous machinery has the potential to provide significant benefits to the efficiency of farming operations, but the existing systems for performing one of the most essential automation functions, autonomous steering to keep machinery on the proper course, each have drawbacks that impact their usability in various scenarios. In order to address these issues, a new lidar-based system was developed for automatic steering in a typical farm field. This approach uses a two-dimensional lidar unit to scan the ground in front of the robot to detect and steer based on farm tracks, a common feature in many farm fields. This system was implemented and evaluated, with results demonstrating that the system is capable of providing accurate steering corrections.

ContributorsBrauer, Jude (Author) / Mehlhase, Alexandra (Thesis director) / Heinrichs, Robert (Committee member) / Barrett, The Honors College (Contributor) / Software Engineering (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2023-05
158465-Thumbnail Image.png
Description
Riding a bicycle requires accurately performing several tasks, such as balancing and navigation, which may be difficult or even impossible for persons with disabilities. These difficulties may be partly alleviated by providing active balance and steering assistance to the rider. In order to provide this assistance while maintaining free maneuverability,

Riding a bicycle requires accurately performing several tasks, such as balancing and navigation, which may be difficult or even impossible for persons with disabilities. These difficulties may be partly alleviated by providing active balance and steering assistance to the rider. In order to provide this assistance while maintaining free maneuverability, it is necessary to measure the position of the rider on the bicycle and to understand the rider's intent. Applying autonomy to bicycles also has the potential to address some of the challenges posed by traditional automobiles, including CO2 emissions, land use for roads and parking, pedestrian safety, high ownership cost, and difficulty traversing narrow or partially obstructed paths.

The Smart Bike research platform provides a set of sensors and actuators designed to aid in understanding human-bicycle interaction and to provide active balance control to the bicycle. The platform consists of two specially outfitted bicycles, one with force and inertial measurement sensors and the other with robotic steering and a control moment gyroscope, along with the associated software for collecting useful data and running controlled experiments. Each bicycle operates as a self-contained embedded system, which can be used for untethered field testing or can be linked to a remote user interface for real-time monitoring and configuration. Testing with both systems reveals promising capability for applications in human-bicycle interaction and robotics research.
ContributorsBush, Jonathan Ernest (Author) / Zhang, Wenlong (Thesis advisor) / Heinrichs, Robert (Thesis advisor) / Sandy, Douglas (Committee member) / Arizona State University (Publisher)
Created2020