This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171933-Thumbnail Image.png
Description
As people begin to live longer and the population shifts to having more olderadults on Earth than young children, radical solutions will be needed to ease the burden on society. It will be essential to develop technology that can age with the individual. One solution is to keep older adults in their

As people begin to live longer and the population shifts to having more olderadults on Earth than young children, radical solutions will be needed to ease the burden on society. It will be essential to develop technology that can age with the individual. One solution is to keep older adults in their homes longer through smart home and smart living technology, allowing them to age in place. People have many choices when choosing where to age in place, including their own homes, assisted living facilities, nursing homes, or family members. No matter where people choose to age, they may face isolation and financial hardships. It is crucial to keep finances in mind when developing Smart Home technology. Smart home technologies seek to allow individuals to stay inside their homes for as long as possible, yet little work looks at how we can use technology in different life stages. Robots are poised to impact society and ease burns at home and in the workforce. Special attention has been given to social robots to ease isolation. As social robots become accepted into society, researchers need to understand how these robots should mimic natural conversation. My work attempts to answer this question within social robotics by investigating how to make conversational robots natural and reciprocal. I investigated this through a 2x2 Wizard of Oz between-subjects user study. The study lasted four months, testing four different levels of interactivity with the robot. None of the levels were significantly different from the others, an unexpected result. I then investigated the robot’s personality, the participant’s trust, and the participant’s acceptance of the robot and how that influenced the study.
ContributorsMiller, Jordan (Author) / McDaniel, Troy (Thesis advisor) / Michael, Katina (Committee member) / Cooke, Nancy (Committee member) / Bryan, Chris (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2022
Description
Due to monumental advancements in large language models (LLMs), such as OpenAI's ChatGPT, there is widespread interest in integrating this general AI’s capabilities into various applications, including robotics. However, the rush to deploy this technology has left safety as an afterthought, if at all. This study investigates the potential for

Due to monumental advancements in large language models (LLMs), such as OpenAI's ChatGPT, there is widespread interest in integrating this general AI’s capabilities into various applications, including robotics. However, the rush to deploy this technology has left safety as an afterthought, if at all. This study investigates the potential for LLM-fused robots to operate safely in real-world settings. This study begins with a review of ChatGPT, highlighting its capabilities and current challenges, particularly with integrating LLMs into robotics, and continues with similar applications as AI agents though APIs. To assess the safety implications of LLM-driven robots, the study presents experimental methods involving the navigation of a TurtleSim robot in 2D environments when given different scenarios. Various parameters are analyzed to determine the current capabilities of ChatGPT to understand how to adjust any agents it possesses based on the situation. Current findings reveal that ChatGPT-driven robots demonstrate adaptive behavior based on the scenario provided, indicating their potential for real-time safety adjustments and eliciting further research to ensure safe and successful integration of these robots into diverse work environments.
ContributorsPisors, Jacob (Author) / Cooke, Nancy (Thesis director) / Delp, Deana (Committee member) / Barrett, The Honors College (Contributor) / Tech Entrepreneurship & Mgmt (Contributor) / Engineering Programs (Contributor)
Created2024-05