This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 17
Filtering by

Clear all filters

156390-Thumbnail Image.png
Description
This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users.

This work presents the integration of user intent detection and control in the development of the fluid-driven, wearable, and continuum, Soft Poly-Limb (SPL). The SPL utilizes the numerous traits of soft robotics to enable a novel approach to provide safe and compliant mobile manipulation assistance to healthy and impaired users. This wearable system equips the user with an additional limb made of soft materials that can be controlled to produce complex three-dimensional motion in space, like its biological counterparts with hydrostatic muscles. Similar to the elephant trunk, the SPL is able to manipulate objects using various end effectors, such as suction adhesion or a soft grasper, and can also wrap its entire length around objects for manipulation. User control of the limb is demonstrated using multiple user intent detection modalities. Further, the performance of the SPL studied by testing its capability to interact safely and closely around a user through a spatial mobility test. Finally, the limb’s ability to assist the user is explored through multitasking scenarios and pick and place tests with varying mounting locations of the arm around the user’s body. The results of these assessments demonstrate the SPL’s ability to safely interact with the user while exhibiting promising performance in assisting the user with a wide variety of tasks, in both work and general living scenarios.
ContributorsVale, Nicholas Marshall (Author) / Polygerinos, Panagiotis (Thesis advisor) / Zhang, Wenlong (Committee member) / Artemiadis, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
Description
For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery

For a conventional quadcopter system with 4 planar rotors, flight times vary between 10 to 20 minutes depending on the weight of the quadcopter and the size of the battery used. In order to increase the flight time, either the weight of the quadcopter should be reduced or the battery size should be increased. Another way is to increase the efficiency of the propellers. Previous research shows that ducting a propeller can cause an increase of up to 94 % in the thrust produced by the rotor-duct system. This research focused on developing and testing a quadcopter having a centrally ducted rotor which produces 60 % of the total system thrust and 3 other peripheral rotors. This quadcopter will provide longer flight times while having the same maneuvering flexibility in planar movements.
ContributorsLal, Harsh (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
135645-Thumbnail Image.png
Description
This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not

This thesis proposes the concept of soft robotic supernumerary limbs to assist the wearer in the execution of tasks, whether it be to share loads or replace an assistant. These controllable extra arms are made using soft robotics to reduce the weight and cost of the device, and are not limited in size and location to the user's arm as with exoskeletal devices. Soft robotics differ from traditional robotics in that they are made using soft materials such as silicone elastomers rather than hard materials such as metals or plastics. This thesis presents the design, fabrication, and testing of the arm, including the joints and the actuators to move them, as well as the design and fabrication of the human-body interface to unite man and machine. This prototype utilizes two types of pneumatically-driven actuators, pneumatic artificial muscles and fiber-reinforced actuators, to actuate the elbow and shoulder joints, respectively. The robotic limb is mounted at the waist on a backpack frame to avoid interfering with the wearer's biological arm. Through testing and evaluation, this prototype device proves the feasibility of soft supernumerary limbs, and opens up opportunities for further development into the field.
ContributorsOlson, Weston Roscoe (Author) / Polygerinos, Panagiotis (Thesis director) / Zhang, Wenlong (Committee member) / Engineering Programs (Contributor) / Barrett, The Honors College (Contributor)
Created2016-05
189307-Thumbnail Image.png
Description
Acrobatic maneuvers of quadrotors present unique challenges concerning trajectorygeneration, control, and execution. Specifically, the flip maneuver requires dynamically feasible trajectories and precise control. Various factors, including rotor dynamics, thrust allocation, and control strategies, influence the successful execution of flips. This research introduces an approach for tracking optimal trajectories to execute flip maneuvers while ensuring

Acrobatic maneuvers of quadrotors present unique challenges concerning trajectorygeneration, control, and execution. Specifically, the flip maneuver requires dynamically feasible trajectories and precise control. Various factors, including rotor dynamics, thrust allocation, and control strategies, influence the successful execution of flips. This research introduces an approach for tracking optimal trajectories to execute flip maneuvers while ensuring system stability autonomously. Model Predictive Control (MPC) designs the controller, enabling the quadrotor to plan and execute optimal trajectories in real-time, accounting for dynamic constraints and environmental factors. The utilization of predictive models enables the quadrotor to anticipate and adapt to changes during aggressive maneuvers. Simulation-based evaluations were conducted in the ROS and Gazebo environments. These evaluations provide valuable insights into the quadrotor’s behavior, response time, and tracking accuracy. Additionally, real-time flight experiments utilizing state- of-the-art flight controllers, such as the PixHawk 4, and companion computers, like the Hardkernel Odroid, validate the effectiveness of the proposed control algorithms in practical scenarios. The conducted experiments also demonstrate the successful execution of the proposed approach. This research’s outcomes contribute to quadrotor technology’s advancement, particularly in acrobatic maneuverability. This opens up possibilities for executing maneuvers with precise timing, such as slingshot probe releases during flips. Moreover, this research demonstrates the efficacy of MPC controllers in achieving autonomous probe throws within no-fly zone environments while maintaining an accurate desired range. Field application of this research includes probe deployment into volcanic plumes or challenging-to-access rocky fault scarps, and imaging of sites of interest. along flight paths through rolling or pitching maneuvers of the quadrotor, to use sensorsuch as cameras or spectrometers on the quadrotor belly.
Contributorsjain, saransh (Author) / Das, Jnaneshwar (Thesis advisor) / Zhang, Wenlong (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2023
157404-Thumbnail Image.png
Description
This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic

This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion when used in conjunction with the radial actuation. Furthermore, a bio-inspired control algorithm for locomotion allows the robot to maneuver through a pipe by mimicking the peristaltic gait of an inchworm. This thesis provides an examination and evaluation of the structure and behavior of the inflatable actuators through computational modeling of the material and design, as well as the experimental data of the forces and displacements generated by the actuators. The theoretical results are contrasted with/against experimental data utilizing a physical prototype of the soft robot. The design is anticipated to enable compliant robots to conform to the space offered to them and overcome occlusions from accumulated solids found in pipes. The intent of the device is to be used for inspecting existing pipelines owned and operated by Salt River Project, a Phoenix-area water and electricity utility provider.
ContributorsAdams, Wade Silas (Author) / Aukes, Daniel (Thesis advisor) / Sugar, Thomas (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2019
Description
Undulatory locomotion is a unique form of swimming that generates thrust through the propagation of a wave through a fish’s body. The proposed device utilizes a constrained compliant material with a single actuator to generate an undulatory motion. This paper draws inspiration from Anguilliformes and discusses the kinematics and dynamics

Undulatory locomotion is a unique form of swimming that generates thrust through the propagation of a wave through a fish’s body. The proposed device utilizes a constrained compliant material with a single actuator to generate an undulatory motion. This paper draws inspiration from Anguilliformes and discusses the kinematics and dynamics of wave propagation of an underwater robot. A variety of parameters are explored through modeling and are optimized for thrust generation to better understand the device. This paper validates the theoretical spine behavior through experimentation and provides a path forward for future development in device optimization for various applications. Previous work developed devices that utilized either paired soft actuators or multiple redundant classical actuators that resulted in a complex prototype with intricate controls. The work of this paper contrasts with prior work in that it aims to achieve undulatory motion through passive actuation from a single actively driven point which simplifies the control. Through this work, the goal is to further explore low-cost soft robotics via bistable mechanisms, continuum material properties, and simplified modeling practices.
ContributorsKwan, Anson (Author) / Aukes, Daniel (Thesis advisor) / Zhang, Wenlong (Committee member) / Marvi, Hamid (Committee member) / Arizona State University (Publisher)
Created2023
189391-Thumbnail Image.png
Description
Robotic technology can be broadly categorized into two main approaches based on the compliance of the robot's materials and structure: hard and soft. Hard, traditional robots, with mechanisms to transmit forces, provide high degrees of freedom (DoFs) and precise manipulation, making them commonly used in industry and academic research. The

Robotic technology can be broadly categorized into two main approaches based on the compliance of the robot's materials and structure: hard and soft. Hard, traditional robots, with mechanisms to transmit forces, provide high degrees of freedom (DoFs) and precise manipulation, making them commonly used in industry and academic research. The field of soft robotics, on the other hand, is a new trend from the past three decades of robotics that uses soft materials such as silicone or textiles as the body or material base instead of the rigid bodies used in traditional robots. Soft robots are typically pre-programmed with specific geometries, and perform well at tasks such as human-robot interaction, locomotion in complex environments, and adaptive reconfiguration to the environment, which reduces the cost of future programming and control. However, full soft robotic systems are often less mobile due to their actuation --pneumatics, high-voltage electricity or magnetics -- even if the robot itself is at a millimeter or centimeter scale. Rigid or hard robots, on the other hand, can often carry the weight of their own power, but with a higher burden of cost for control and sensing. A middle ground is thus sought, to combine soft robotics technologies with rigid robots, by implementing mechanism design principles with soft robots to embed functionalities or utilize soft robots as the actuator on a rigid robotic system towards an affordable robotic system design. This dissertation showcases five examples of this design principle with two main research branches: locomotion and wearable robotics. In the first research case, an example of how a miniature swimming robot can navigate through a granular environment using compliant plates is presented, compared to other robots that change their shape or use high DoF mechanisms. In the second pipeline, mechanism design is implemented using soft robotics concepts in a wearable robot. An origami-inspired, soft "exo-shell", that can change its stiffness on demand, is introduced. As a follow-up to this wearable origami-inspired robot, a geometry-based, ``near" self-locking modular brake is then presented. Finally, upon combining the origami-inspired wearable robot and brake design, a concept of a modular wearable robot is showcased for the purpose of answering a series of biomechanics questions.
ContributorsLi, Dongting (Author) / Aukes, Daniel M (Thesis advisor) / Sugar, Thomas G (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2023
171772-Thumbnail Image.png
Description
Physical and structural tree measurements are applied in forestry, precision agriculture and conservation for various reasons. Since measuring tree properties manually is tedious, measurements from only a small subset of trees present in a forest, agricultural land or survey site are often used. Utilizing robotics to autonomously estimate physical tree

Physical and structural tree measurements are applied in forestry, precision agriculture and conservation for various reasons. Since measuring tree properties manually is tedious, measurements from only a small subset of trees present in a forest, agricultural land or survey site are often used. Utilizing robotics to autonomously estimate physical tree dimensions would speed up the measurement or data collection process and allow for a much larger set of trees to be used in studies. In turn, this would allow studies to make more generalizable inferences about areas with trees. To this end, this thesis focuses on developing a system that generates a semantic representation of the topology of a tree in real-time. The first part describes a simulation environment and a real-world sensor suite to develop and test the tree mapping pipeline proposed in this thesis. The second part presents details of the proposed tree mapping pipeline. Stage one of the mapping pipeline utilizes a deep learning network to detect woody and cylindrical portions of a tree like trunks and branches based on popular semantic segmentation networks. Stage two of the pipeline proposes an algorithm to separate the detected portions of a tree into individual trunk and branch segments. The third stage implements an optimization algorithm to represent each segment parametrically as a cylinder. The fourth stage formulates a multi-sensor factor graph to incrementally integrate and optimize the semantic tree map while also fusing two forms of odometry. Finally, results from all the stages of the tree mapping pipeline using simulation and real-world data are presented. With these implementations, this thesis provides an end-to-end system to estimate tree topology through semantic representations for forestry and precision agriculture applications.
ContributorsVishwanatha, Rakshith (Author) / Das, Jnaneshwar (Thesis advisor) / Martin, Roberta (Committee member) / Throop, Heather (Committee member) / Zhang, Wenlong (Committee member) / Ehsani, Reza (Committee member) / Arizona State University (Publisher)
Created2022
158241-Thumbnail Image.png
Description
This thesis introduces a new robotic leg design with three degrees of freedom that

can be adapted for both bipedal and quadrupedal locomotive systems, and serves as

a blueprint for designers attempting to create low cost robot legs capable of balancing

and walking. Currently, bipedal leg designs are mostly rigid and have not

This thesis introduces a new robotic leg design with three degrees of freedom that

can be adapted for both bipedal and quadrupedal locomotive systems, and serves as

a blueprint for designers attempting to create low cost robot legs capable of balancing

and walking. Currently, bipedal leg designs are mostly rigid and have not strongly

taken into account the advantages/disadvantages of using an active ankle, as opposed

to a passive ankle, for balancing. This design uses low-cost compliant materials, but

the materials used are thick enough to mimic rigid properties under low stresses, so

this paper will treat the links as rigid materials. A new leg design has been created

that contains three degrees of freedom that can be adapted to contain either a passive

ankle using springs, or an actively controlled ankle using an additional actuator. This

thesis largely aims to focus on the ankle and foot design of the robot and the torque

and speed requirements of the design for motor selection. The dynamics of the system,

including height, foot width, weight, and resistances will be analyzed to determine

how to improve design performance. Model-based control techniques will be used to

control the angle of the leg for balancing. In doing so, it will also be shown that it

is possible to implement model-based control techniques on robots made of laminate

materials.
ContributorsShafa, Taha A (Author) / Aukes, Daniel M (Thesis advisor) / Rogers, Bradley (Committee member) / Zhang, Wenlong (Committee member) / Arizona State University (Publisher)
Created2020
157633-Thumbnail Image.png
Description
The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid

The ubiquity of single camera systems in society has made improving monocular depth estimation a topic of increasing interest in the broader computer vision community. Inspired by recent work in sparse-to-dense depth estimation, this thesis focuses on sparse patterns generated from feature detection based algorithms as opposed to regular grid sparse patterns used by previous work. This work focuses on using these feature-based sparse patterns to generate additional depth information by interpolating regions between clusters of samples that are in close proximity to each other. These interpolated sparse depths are used to enforce additional constraints on the network’s predictions. In addition to the improved depth prediction performance observed from incorporating the sparse sample information in the network compared to pure RGB-based methods, the experiments show that actively retraining a network on a small number of samples that deviate most from the interpolated sparse depths leads to better depth prediction overall.

This thesis also introduces a new metric, titled Edge, to quantify model performance in regions of an image that show the highest change in ground truth depth values along either the x-axis or the y-axis. Existing metrics in depth estimation like Root Mean Square Error(RMSE) and Mean Absolute Error(MAE) quantify model performance across the entire image and don’t focus on specific regions of an image that are hard to predict. To this end, the proposed Edge metric focuses specifically on these hard to classify regions. The experiments also show that using the Edge metric as a small addition to existing loss functions like L1 loss in current state-of-the-art methods leads to vastly improved performance in these hard to classify regions, while also improving performance across the board in every other metric.
ContributorsRai, Anshul (Author) / Yang, Yezhou (Thesis advisor) / Zhang, Wenlong (Committee member) / Liang, Jianming (Committee member) / Arizona State University (Publisher)
Created2019