This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 6 of 6
Filtering by

Clear all filters

171489-Thumbnail Image.png
Description
The unparalleled motion and manipulation abilities of an octopus have intrigued engineers and biologists for many years. How can an octopus having no bones transform its arms from a soft state to a one stiff enough to catch and even kill prey? The octopus arm is a muscular hydrostat that

The unparalleled motion and manipulation abilities of an octopus have intrigued engineers and biologists for many years. How can an octopus having no bones transform its arms from a soft state to a one stiff enough to catch and even kill prey? The octopus arm is a muscular hydrostat that enables these manipulations in and through its arm. The arm is a tightly packed array of muscle groups namely longitudinal, transverse and oblique. The orientation of these muscle fibers aids the octopus in achieving core movements like shortening, bending, twisting and elongation as hypothesized previously. Through localized electromyography (EMG) recordings of the longitudinal and transverse muscles of Octopus bimaculoides quantitatively the roles of these muscle layers will be confirmed. Five EMG electrode probes were inserted into the longitudinal and transverse muscle layers of an amputated octopus arm. One into the axial nerve cord to electrically stimulate the arm for movements. The experiments were conducted with the amputated arm submerged in sea water with surrounded cameras to record the movement, all housed in a Faraday cage. The findings of this research could possibly lead to the development of soft actuators built out of soft materials for applications in minimally invasive surgery, search-and-rescue operations, and wearable prosthetics.
ContributorsMathews, Robin Koshy (Author) / Marvi, Hamid (Thesis advisor) / Fisher, Rebecca (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2022
190970-Thumbnail Image.png
Description
Animals have always been a source of inspiration for real-life problems. The octopus is one such animal that has a lot of untapped potential. The octopus’s arm is without solid joints or bone structure and despite this it can achieve many complicated movements with virtually infinite degrees of freedom. This

Animals have always been a source of inspiration for real-life problems. The octopus is one such animal that has a lot of untapped potential. The octopus’s arm is without solid joints or bone structure and despite this it can achieve many complicated movements with virtually infinite degrees of freedom. This ability is made possible through the unique morphology of the arm. The octopus’s arm is divided into transverse, longitudinal, oblique, and circular muscle groups and each one has a unique muscle fiber orientation. The octopus’s arm is classified as a hydrostat because it maintains a constant volume while contracting with the help of its different muscle groups. These muscle groups allow elongation, shortening, bending, and twisting of the arm when they work in combination with each other. To confirm the role of transverse and longitudinal muscle groups, an electromyography (EMG) recording of these muscle groups was performed while an amputated arm of an Octopus bimaculoides was stimulated with an electrical signal to induce movement. Statistical analysis was performed on these results to confirm the roles of each muscle group quantitatively. Octopus arm morphology was previously assumed to be uniform along the arm. Through a magnetic resonance imaging (MRI) study at the proximal, middle, and distal sections of the arm this notion was disproven, and a new pattern was discovered. Drawing inspiration from this finding and previous octopus arm prototypes, 4 bio-inspired designs were conceived and tested in finite element analysis (FEA) simulations. Four tests in elongation, shortening, bending, and transverse-assisted bending movements were performed on all designs to compare each design’s performance. The findings in this study have applications in engineering and soft robotics fields for use cases such as, handling fragile objects, minimally invasive surgeries, difficult-to-access areas that require squeezing through small holes, and other novel cases.
ContributorsAhmadi, Salaheddin (Author) / Marvi, Hamidreza (Thesis advisor) / Fisher, Rebecca (Committee member) / Xu, Zhe (Committee member) / Arizona State University (Publisher)
Created2023
171660-Thumbnail Image.png
Description
With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies

With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies lower coverage and/or raise prices of plans with sufficient coverage, it can be expected that the proportion of uninsured/under insured to fully insured people will rise. To address this, lower cost alternative methods of treatment must be developed so people can obtain the treated required for a sufficient recovery. The presented robotic glove employs low cost fabric soft pneumatic actuators which use a closed loop feedback controller based on readings from embedded soft sensors. This provides the device with proprioceptive abilities for the dynamic control of each independent actuator. Force and fatigue tests were performed to determine the viability of the actuator design. A Box and Block test along with a motion capture study was completed to study the performance of the device. This paper presents the design and classification of a soft robotic glove with a feedback controller as a at-home stroke rehabilitation device.
ContributorsAxman, Reed C (Author) / Zhang, Wenlong (Thesis advisor) / Santello, Marco (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2022
165073-Thumbnail Image.png
Description

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s overall assessment of health and well-being. The thesis sought to fill the gap that prevents data collection of a female entire sexual response from initial arousal to final orgasm.

ContributorsDirks, Jessica (Author) / Ralston, Laurie (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Human Systems Engineering (Contributor)
Created2022-05
156281-Thumbnail Image.png
Description
Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time.

Currently, one of the biggest limiting factors for long-term deployment of autonomous systems is the power constraints of a platform. In particular, for aerial robots such as unmanned aerial vehicles (UAVs), the energy resource is the main driver of mission planning and operation definitions, as everything revolved around flight time. The focus of this work is to develop a new method of energy storage and charging for autonomous UAV systems, for use during long-term deployments in a constrained environment. We developed a charging solution that allows pre-equipped UAV system to land on top of designated charging pads and rapidly replenish their battery reserves, using a contact charging point. This system is designed to work with all types of rechargeable batteries, focusing on Lithium Polymer (LiPo) packs, that incorporate a battery management system for increased reliability. The project also explores optimization methods for fleets of UAV systems, to increase charging efficiency and extend battery lifespans. Each component of this project was first designed and tested in computer simulation. Following positive feedback and results, prototypes for each part of this system were developed and rigorously tested. Results show that the contact charging method is able to charge LiPo batteries at a 1-C rate, which is the industry standard rate, maintaining the same safety and efficiency standards as modern day direct connection chargers. Control software for these base stations was also created, to be integrated with a fleet management system, and optimizes UAV charge levels and distribution to extend LiPo battery lifetimes while still meeting expected mission demand. Each component of this project (hardware/software) was designed for manufacturing and implementation using industry standard tools, making it ideal for large-scale implementations. This system has been successfully tested with a fleet of UAV systems at Arizona State University, and is currently being integrated into an Arizona smart city environment for deployment.
ContributorsMian, Sami (Author) / Panchanathan, Sethuraman (Thesis advisor) / Berman, Spring (Committee member) / Yang, Yezhou (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2018
161834-Thumbnail Image.png
Description
The knee joint has essential functions to support the body weight and maintain normal walking. Neurological diseases like stroke and musculoskeletal disorders like osteoarthritis can affect the function of the knee. Besides physical therapy, robot-assisted therapy using wearable exoskeletons and exosuits has shown the potential as an efficient therapy that

The knee joint has essential functions to support the body weight and maintain normal walking. Neurological diseases like stroke and musculoskeletal disorders like osteoarthritis can affect the function of the knee. Besides physical therapy, robot-assisted therapy using wearable exoskeletons and exosuits has shown the potential as an efficient therapy that helps patients restore their limbs’ functions. Exoskeletons and exosuits are being developed for either human performance augmentation or medical purposes like rehabilitation. Although, the research on exoskeletons started early before exosuits, the research and development on exosuits have recently grown rapidly as exosuits have advantages that exoskeletons lack. The objective of this research is to develop a soft exosuit for knee flexion assistance and validate its ability to reduce the EMG activity of the knee flexor muscles. The exosuit has been developed with a novel soft fabric actuator and novel 3D printed adjustable braces to attach the actuator aligned with the knee. A torque analytical model has been derived and validate experimentally to characterize and predict the torque output of the actuator. In addition to that, the actuator’s deflation and inflation time has been experimentally characterized and a controller has been implemented and the exosuit has been tested on a healthy human subject. It is found that the analytical torque model succeeded to predict the torque output in flexion angle range from 0° to 60° more precisely than analytical models in the literature. Deviations existed beyond 60° might have happened because some factors like fabric extensibility and actuator’s bending behavior. After human testing, results showed that, for the human subject tested, the exosuit gave the best performance when the controller was tuned to inflate at 31.9 % of the gait cycle. At this inflation timing, the biceps femoris, the semitendinosus and the vastus lateralis muscles showed average electromyography (EMG) reduction of - 32.02 %, - 23.05 % and - 2.85 % respectively. Finally, it is concluded that the developed exosuit may assist the knee flexion of more diverse healthy human subjects and it may potentially be used in the future in human performance augmentation and rehabilitation of people with disabilities.
ContributorsHasan, Ibrahim Mohammed Ibrahim (Author) / Zhang, Wenlong (Thesis advisor) / Aukes, Daniel (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2021