This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

171479-Thumbnail Image.png
Description
The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular

The world today needs novel solutions to address current challenges in areas spanning areas from sustainable manufacturing to healthcare, and biotechnology offers the potential to help address some of these issues. One tool that offers opportunities across multiple industries is the use of nonribosomal peptide synthases (NRPSs). These are modular biological factories with individualized subunits that function in concert to create novel peptides.One element at the heart of environmental health debates today is plastics. Biodegradable alternatives for petroleum-based plastics is a necessity. One NRPS, cyanophycin synthetase (CphA), can produce cyanophycin grana protein (CGP), a polymer composed of a poly-aspartic acid backbone with arginine side chains. The aspartic backbone has the potential to replace synthetic polyacrylate, although current production costs are prohibitive. In Chapter 2, a CphA variant from Tatumella morbirosei is characterized, that produces up to 3x more CGP than other known variants, and shows high iCGP specificity in both flask and bioreactor trials. Another CphA variant, this one from Acinetobacter baylyi, underwent rational protein design to create novel mutants. One, G217K, is 34% more productive than the wild type, while G163K produces a CGP with shorter chain lengths. The current structure refined from 4.4Å to 3.5Å. Another exciting application of NRPSs is in healthcare. They can be used to generate novel peptides such as complex antibiotics. A recently discovered iterative polyketide synthase (IPTK), dubbed AlnB, produces an antibiotic called allenomycin. One of the modular subunits, a dehydratase named AlnB_DH, was crystallized to 2.45Å. Several mutations were created in multiple active site residues to help understand the functional mechanism of AlnB_DH. A preliminary holoenzyme AlnB structure at 3.8Å was generated although the large disorganized regions demonstrated an incomplete structure. It was found that chain length is the primary factor in driving dehydratase action within AlnB_DH, which helps lend understanding to this module.
ContributorsSwain, Kyle (Author) / Nannenga, Brent (Thesis advisor) / Nielsen, David (Committee member) / Mills, Jeremy (Committee member) / Seo, Eileen (Committee member) / Acharya, Abhinav (Committee member) / Arizona State University (Publisher)
Created2022
189261-Thumbnail Image.png
Description
Natures hardworking machines, proteins, are dynamic beings. Comprehending the role of dynamics in mediating allosteric effects is paramount to unraveling the intricate mechanisms underlying protein function and devising effective protein design strategies. Thus, the essential objective of this thesis is to elucidate ways to use protein dynamics based tools integrated

Natures hardworking machines, proteins, are dynamic beings. Comprehending the role of dynamics in mediating allosteric effects is paramount to unraveling the intricate mechanisms underlying protein function and devising effective protein design strategies. Thus, the essential objective of this thesis is to elucidate ways to use protein dynamics based tools integrated with evolution and docking techniques to investigate the effect of distal allosteric mutations on protein function and further rationally design proteins. To this end, I first employed molecular dynamics (MD) simulations, Dynamic Flexibility Index (DFI) and Dynamic Coupling Index (DCI) on PICK1 PDZ, Butyrylcholinesterase (BChE), and Dihydrofolate reductase (DHFR) to uncover how these proteins utilize allostery to tune activity. Moreover, a new classification technique (“Controller”/“Controlled”) based on asymmetry in dynamic coupling is developed and applied to DHFR to elucidate the effect of allosteric mutations on enzyme activity. Subsequently, an MD driven dynamics design approach is applied on TEM-1 β-lactamase to tailor its activity against β-lactam antibiotics. New variants were created, and using a novel analytical approach called "dynamic distance analysis" (DDA) the degree of dynamic similarity between these variants were quantified. The experimentally confirmed results of these studies showed that the implementation of MD driven dynamics design holds significant potential for generating variants that can effectively modulate activity and stability. Finally, I introduced an evolutionary guided molecular dynamics driven protein design approach, integrated co-evolution and dynamic coupling (ICDC), to identify distal residues that modulate binding site dynamics through allosteric mechanisms. After validating the accuracy of ICDC with a complete mutational data set of β-lactamase, I applied it to Cyanovirin-N (CV-N) to identify allosteric positions and mutations that can modulate binding affinity. To further investigate the impact of mutations on the identified allosteric sites, I subjected putative mutants to binding analysis using Adaptive BP-Dock. Experimental validation of the computational predictions demonstrated the efficacy of integrating MD, DFI, DCI, and evolution to guide protein design. Ultimately, the research presented in this thesis demonstrates the effectiveness of using evolutionary guided molecular dynamics driven design alongside protein dynamics based tools to examine the significance of allosteric interactions and their influence on protein function.
ContributorsKazan, Ismail Can (Author) / Ozkan, Sefika Banu (Thesis advisor) / Ghirlanda, Giovanna (Thesis advisor) / Mills, Jeremy (Committee member) / Beckstein, Oliver (Committee member) / Arizona State University (Publisher)
Created2023
193587-Thumbnail Image.png
Description
Since understanding the nature of proteins, it has been a long held belief that protein sequence dictated structure which then determined function. As such, all proteins contained structure and those that did not must not serve a purpose. For the last 25 years, scientists have begun to understand that disordered

Since understanding the nature of proteins, it has been a long held belief that protein sequence dictated structure which then determined function. As such, all proteins contained structure and those that did not must not serve a purpose. For the last 25 years, scientists have begun to understand that disordered proteins, lacking structure, did not lack function. Their unique ability to undergo liquid-liquid phase separation served a cellular purpose, most involving nucleic acids. As more is uncovered, these unique proteins are being used to build new systems. Phase separated disordered proteins were used to design a functional organelle using the enzyme horseradish peroxidase and its chromatic substrate ABTS. Upon doing so, it was discovered that disordered proteins are highly susceptible to chemical modification through radical reactions with tyrosine. The increased frequency of tyrosine in disordered proteins provides multiple sites of conjugation by the ABTS radical and other substrates. These modifications then alter the physical properties of the proteins. The phase separated system was also incorporated with shell proteins from bacterial microcompartments in an attempt to limit access to the droplets. Through expression with truncations of the disordered sequence, shell proteins were able to interact with the droplets. Despite the appearance of complete coatings, they were found to be permeable to their surroundings, though much more stable than uncoated droplets. Just as disordered proteins are considered outside the traditional structures, so too are many students entering higher education. Non-traditional students are becoming more prevalent in the undergraduate population, though they are woefully underrepresented in the natural sciences. The benefits these students bring to their programs is highlighted and the circumstances that drive them away from STEM is explored. Non-traditional students contribute to the diversity of the scientific population, though many pursue education in non-STEM fields. To support these students, focus is put on andragogy (the teaching of adults), rather than pedagogy (the teaching of children). Non-traditional students face isolation and discrimination that is not being addressed by higher education institutions, hindering their ability to succeed. Through infrastructure designed for adult learners, STEM fields can be diversified in non-traditional ways.
ContributorsCostantino, Michele (Author) / Ghirlanda, Giovanna (Thesis advisor) / Mills, Jeremy (Committee member) / Matyushov, Dmitry (Committee member) / Arizona State University (Publisher)
Created2024
158837-Thumbnail Image.png
Description
G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol’s general effects on the membrane is not well-understood. Results from coarse-grained molecular dynamics (CGMD) simulations coupled and structural bioinformatics offer new insights into

G protein-coupled receptors (GPCRs) are known to be modulated by membrane cholesterol levels, but whether or not the effects are caused by specific receptor-cholesterol interactions or cholesterol’s general effects on the membrane is not well-understood. Results from coarse-grained molecular dynamics (CGMD) simulations coupled and structural bioinformatics offer new insights into how cholesterol modulates GPCR function by showing cholesterol interactions with β2AR that agree with previously published data. Additionally, differential and specific cholesterol binding in the CCK receptor subfamily was observed while revealing a previously unreported Cholesterol Recognition Amino-acid Consensus (CRAC) sequence that is also conserved across 38% of class A GPCRs. Mutation of this conserved CRAC sequence of the β2AR affects cholesterol stabilization of the receptor in a lipid bilayer. Serial femtosecond crystallography (SFX) with X-ray free electron lasers (XFELs) has proven highly successful for structure determination of challenging membrane proteins crystallized in lipidic cubic phase, however, as most techniques, it has limitations. Using an optimized SFX experimental setup in a helium atmosphere we determined the room temperature structure of the adenosine A2A receptor (A2AAR) at 2.0 Å resolution and compared it with previous A2AAR structures determined in vacuum and/or at cryogenic temperatures. Specifically, we demonstrated the capability of utilizing high XFEL beam transmissions, in conjunction with a high dynamic range detector, to collect high-resolution SFX data while reducing crystalline material consumption and shortening the collection time required for a complete data set.
The results of these studies provide a better understanding of receptor-cholesterol interactions that can contribute to novel and improved therapeutics for a variety of diseases. Furthermore, the experimental setups presented herein can be applied to future molecular dynamics and SFX applications for protein nanocrystal samples to aid in structure-based discovery efforts of therapeutic targets that are difficult to crystallize.
ContributorsGeiger, James (Author) / Liu, Wei (Thesis advisor) / Mills, Jeremy (Committee member) / Chiu, Po-Lin (Committee member) / Arizona State University (Publisher)
Created2020