This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

Description
The mission of EZ-Sit is to alleviate pain and increase comfort by creating a product that allows users to put their feet up when sitting for long periods of time. This product will connect to any single-stem office chair with ease and will provide users with the ability to put

The mission of EZ-Sit is to alleviate pain and increase comfort by creating a product that allows users to put their feet up when sitting for long periods of time. This product will connect to any single-stem office chair with ease and will provide users with the ability to put their feet up whenever and wherever they work. Our goal is to empower individuals to pursue their goals without the hindrance of discomfort that comes with sitting for extended periods of time. At EZ-Sit we believe that no one’s productivity should be impeded due to the pain caused by a sedentary work life. We hope that this product will bring about physical well-being in the workplace so individuals can focus on the day ahead of them.
ContributorsVentura, Jedriq (Author) / Kozub, Isabella (Co-author) / Aldama, Jesus (Co-author) / Heraty, Gabe (Co-author) / Choi, Enoch (Co-author) / Byrne, Jared (Thesis director) / Thommason, Anna (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor)
Created2024-05
165073-Thumbnail Image.png
Description

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s

The intent of this project was to design, build, and test a female-intended vibrator that incorporates elements of haptic feedback, biomimicry, and/or micro robotics. Device development was based on human-centered user design elements and the study of physiological arousal, as sexuality and sexual functioning are a part of a human’s overall assessment of health and well-being. The thesis sought to fill the gap that prevents data collection of a female entire sexual response from initial arousal to final orgasm.

ContributorsDirks, Jessica (Author) / Ralston, Laurie (Thesis director) / McDaniel, Troy (Committee member) / Barrett, The Honors College (Contributor) / Engineering Programs (Contributor) / Human Systems Engineering (Contributor)
Created2022-05