This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

131287-Thumbnail Image.png
Description
Thousands of human lives are lost every day due to chronic diseases, some more preventable than others. For years, the gold standard for diagnosing and monitoring these diseases has been through traditional methods such as individualized doctor-patient clinical evaluations, usually involving laboratory tests. These methods, though effective, can be costly,

Thousands of human lives are lost every day due to chronic diseases, some more preventable than others. For years, the gold standard for diagnosing and monitoring these diseases has been through traditional methods such as individualized doctor-patient clinical evaluations, usually involving laboratory tests. These methods, though effective, can be costly, time-consuming, and fail to encompass an overarching perspective of the health profile of the larger population. Wastewater-based epidemiology (WBE) has successfully been employed for decades as a population-level data source informing on the consumption of licit and illicit substance use. It also is showing promise for its use as a community-wide diagnostic tool for broader public health measurements. This literature review constitutes a theoretical evaluation of the potential use of WBE for monitoring the top two deadly diseases in the United States; cardiovascular disease (CVD) and cancer. Literature-reported metabolites indicative of these diseases were evaluated to determine if they were capable of being identified and monitored in wastewater. Potential analytes include cardiac-specific troponin, α-fenotroin, and inositol. Results obtained within suggest WBE could be used as a viable and economical tool to track and monitor the top deadly diseases in human populations. This methodology could be implemented in tandem with current practices in order to provide a more holistic understanding of prevalence and risk for CVD and cancer.
ContributorsAmin, Vivek (Author) / Halden, Rolf (Thesis director) / Niebuhr, Robert (Committee member) / Bowes, Devin (Committee member) / School of Human Evolution & Social Change (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
165750-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’- deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsNguyen, Jasmine (Author) / John, Dona (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Dean, W.P. Carey School of Business (Contributor) / Department of Finance (Contributor)
Created2022-05
165754-Thumbnail Image.png
Description

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has

Diabetes affects millions of people globally and can lead to other severe health complications when undiagnosed or not properly managed. The incidence of diabetes has rapidly increased over the past several years, however, not all individuals have access to affordable or convenient healthcare. We hypothesize that wastewater-based epidemiology (WBE) has the potential to assess community health status by analyzing biomarkers indicative of human health and disease, including diabetes. Used in tandem with current methods, monitoring indicators of diabetes in community wastewater could provide a comprehensive assessment tool for disease prevalence in large and small populations. Specifically, the proposed targeted biomarker evaluated in this study to indicate population-wide diabetes prevalence was 8-hydroxy-2’-deoxyguanosine (8-OHdG). This work combines a rigorous literature review and initial laboratory studies to explore the possibility of diabetes monitoring at the community level using WBE. Here, 24-hour composite wastewater samples were collected from within two wastewater sub-catchments of Greater Tempe, AZ. Overall goals of this study were to: i) Determine the feasibility to detect endogenous markers of diabetes in community wastewater; ii) Assess the potential impact of confounding factors, such as smoking, cancer, and atherosclerosis, through a literature analysis; and iii) Evaluate the socioeconomic status and demographics of the study population. Preliminary results of the experiments suggest this methodology to be feasible, as indicated by the observation of detectable signals of 8-OHdG in community wastewater collected from the sewer infrastructure; however, future work and continued experimentation will be required to address low signal intensity and assay precision and accuracy. Thus, the work presented here provides valuable proof-of-concept data, with detailed information on the method employed and identified opportunities to further determine the relationship between 8-OHdG concentrations in municipal wastewater and diabetes prevalence at the community level.

ContributorsJohn, Dona (Author) / Nguyen, Jasmine (Co-author) / Halden, Rolf (Thesis director) / Driver, Erin (Committee member) / Bowes, Devin (Committee member) / Barrett, The Honors College (Contributor) / School of Molecular Sciences (Contributor) / Department of Psychology (Contributor)
Created2022-05