This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 349
Filtering by

Clear all filters

152029-Thumbnail Image.png
Description
Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative

Induced pluripotent stem cells (iPSCs) are an intriguing approach for neurological disease modeling, because neural lineage-specific cell types that retain the donors' complex genetics can be established in vitro. The statistical power of these iPSC-based models, however, is dependent on accurate diagnoses of the somatic cell donors; unfortunately, many neurodegenerative diseases are commonly misdiagnosed in live human subjects. Postmortem histopathological examination of a donor's brain, combined with premortem clinical criteria, is often the most robust approach to correctly classify an individual as a disease-specific case or unaffected control. We describe the establishment of primary dermal fibroblasts cells lines from 28 autopsy donors. These fibroblasts were used to examine the proliferative effects of establishment protocol, tissue amount, biopsy site, and donor age. As proof-of-principle, iPSCs were generated from fibroblasts from a 75-year-old male, whole body donor, defined as an unaffected neurological control by both clinical and histopathological criteria. To our knowledge, this is the first study describing autopsy donor-derived somatic cells being used for iPSC generation and subsequent neural differentiation. This unique approach also enables us to compare iPSC-derived cell cultures to endogenous tissues from the same donor. We utilized RNA sequencing (RNA-Seq) to evaluate the transcriptional progression of in vitro-differentiated neural cells (over a timecourse of 0, 35, 70, 105 and 140 days), and compared this with donor-identical temporal lobe tissue. We observed in vitro progression towards the reference brain tissue, supported by (i) a significant increasing monotonic correlation between the days of our timecourse and the number of actively transcribed protein-coding genes and long intergenic non-coding RNAs (lincRNAs) (P < 0.05), consistent with the transcriptional complexity of the brain, (ii) an increase in CpG methylation after neural differentiation that resembled the epigenomic signature of the endogenous tissue, and (iii) a significant decreasing monotonic correlation between the days of our timecourse and the percent of in vitro to brain-tissue differences (P < 0.05) for tissue-specific protein-coding genes and all putative lincRNAs. These studies support the utility of autopsy donors' somatic cells for iPSC-based neurological disease models, and provide evidence that in vitro neural differentiation can result in physiologically progression.
ContributorsHjelm, Brooke E (Author) / Craig, David W. (Thesis advisor) / Wilson-Rawls, Norma J. (Thesis advisor) / Huentelman, Matthew J. (Committee member) / Mason, Hugh S. (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2013
Description
Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids

Speciation is the fundamental process that has generated the vast diversity of life on earth. The hallmark of speciation is the evolution of barriers to gene flow. These barriers may reduce gene flow either by keeping incipient species from hybridizing at all (pre-zygotic), or by reducing the fitness of hybrids (post-zygotic). To understand the genetic architecture of these barriers and how they evolve, I studied a genus of wasps that exhibits barriers to gene flow that act both pre- and post-zygotically. Nasonia is a genus of four species of parasitoid wasps that can be hybridized in the laboratory. When two of these species, N. vitripennis and N. giraulti are mated, their offspring suffer, depending on the generation and cross examined, up to 80% mortality during larval development due to incompatible genic interactions between their nuclear and mitochondrial genomes. These species also exhibit pre-zygotic isolation, meaning they are more likely to mate with their own species when given the choice. I examined these two species and their hybrids to determine the genetic and physiological bases of both speciation mechanisms and to understand the evolutionary forces leading to them. I present results that indicate that the oxidative phosphorylation (OXPHOS) pathway, an essential pathway that is responsible for mitochondrial energy generation, is impaired in hybrids of these two species. These results indicate that this impairment is due to the unique evolutionary dynamics of the combined nuclear and mitochondrial origin of this pathway. I also present results showing that, as larvae, these hybrids experience retarded growth linked to the previously observed mortality and I explore possible physiological mechanisms for this. Finally, I show that the pre-mating isolation is due to a change in a single pheromone component in N. vitripennis males, that this change is under simple genetic control, and that it evolved neutrally before being co-opted as a species recognition signal. These results are an important addition to our overall understanding of the mechanisms of speciation and showcase Nasonia as an emerging model for the study of the genetics of speciation.
ContributorsGibson, Joshua D (Author) / Gadau, Jürgen (Thesis advisor) / Harrison, Jon (Committee member) / Pratt, Stephen (Committee member) / Verrelli, Brian (Committee member) / Willis, Wayne (Committee member) / Arizona State University (Publisher)
Created2013
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
152085-Thumbnail Image.png
Description
Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for

Synechocystis sp PCC 6803 is a photosynthetic cyanobacterium that can be easily transformed to produce molecules of interest; this has increased Synechocystis’ popularity as a clean energy platform. Synechocystis has been shown to produce and excrete molecules such as fatty acids, isoprene, etc. after appropriate genetic modification. Challenges faced for large–scale growth of modified Synechocystis include abiotic stress, microbial contamination and high processing costs of product and cell material. Research reported in this dissertation contributes to solutions to these challenges. First, abiotic stress was addressed by overexpression of the heat shock protein ClpB1. In contrast to the wild type, the ClpB1 overexpression mutant (Slr1641+) tolerated rapid temperature changes, but no difference was found between the strains when temperature shifts were slower. Combination of ClpB1 overexpression with DnaK2 overexpression (Slr1641+/Sll0170+) further increased thermotolerance. Next, we used a Synechocystis strain that carries an introduced isoprene synthase gene (IspS+) and that therefore produces isoprene. We attempted to increase isoprene yields by overexpression of key enzymes in the methyl erythritol phosphate (MEP) pathway that leads to synthesis of the isoprene precursor. Isoprene production was not increased greatly by MEP pathway induction, likely because of limitations in the affinity of the isoprene synthase for the substrate. Finally, two extraction principles, two–phase liquid extraction (e.g., with an organic and aqueous phase) and solid–liquid extraction (e.g., with a resin) were tested. Two–phase liquid extraction is suitable for separating isoprene but not fatty acids from the culture medium. Fatty acid removal required acidification or surfactant addition, which affected biocompatibility. Therefore, improvements of both the organism and product–harvesting methods can contribute to enhancing the potential of cyanobacteria as solar–powered biocatalysts for the production of petroleum substitutes.
ContributorsGonzalez Esquer, Cesar Raul (Author) / Vermaas, Willem (Thesis advisor) / Chandler, Douglas (Committee member) / Bingham, Scott (Committee member) / Nielsen, David (Committee member) / Arizona State University (Publisher)
Created2013
151931-Thumbnail Image.png
Description
Bully victimization has been associated with blunted cardiovascular responses to stress as well as elevated responses to stress. The difference between these altered physiological responses to stress is largely unknown. This study explored several possible moderators to the relationship between chronic stress and future cardiac output (an indicator of increased

Bully victimization has been associated with blunted cardiovascular responses to stress as well as elevated responses to stress. The difference between these altered physiological responses to stress is largely unknown. This study explored several possible moderators to the relationship between chronic stress and future cardiac output (an indicator of increased stress) in response to future stressors. These moderators include the difference between social and physical stressors and individual levels of loneliness. Participants were administered measures of loneliness and victimization history, and led to anticipate either a "social" (recorded speech) or "non-social" (pain tolerance test ) stressor, neither of which occurred. EKG and impedance cardiography were measured throughout the session. When anticipating both stressors, loneliness and victimization were associated with increased CO. A regression revealed a three-way interaction, with change in cardiac output depending on victimization history, loneliness, and condition in the physical stressor condition. Loneliness magnified the CO output levels of non-bullied individuals when facing a physical stressor. These results suggest that non- bullied participants high in loneliness are more stressed out when facing stressors, particularly stressors that are physically threatening in nature.
ContributorsHaneline, Magen (Author) / Newman, Matt (Thesis advisor) / Salerno, Jessica (Committee member) / Miller, Paul (Committee member) / Arizona State University (Publisher)
Created2013
151966-Thumbnail Image.png
Description
The purpose of the current study was to use structural equation modeling-based quantitative genetic models to characterize latent genetic and environmental influences on proneness to three discrete negative emotions in middle childhood, according to mother-report, father-report and in-home observation. One primary aim was to test the extent to which covariance

The purpose of the current study was to use structural equation modeling-based quantitative genetic models to characterize latent genetic and environmental influences on proneness to three discrete negative emotions in middle childhood, according to mother-report, father-report and in-home observation. One primary aim was to test the extent to which covariance among the three emotions could be accounted for by a single, common genetically- and environmentally-influenced negative emotionality factor. A second aim was to examine the extent to which different reporters appeared to be tapping into the same genetically- and environmentally-influenced aspects of each emotion. According to mother- and father-report, moderate to high genetic influences were evident for all emotions, with mother- and father-report of fear and father-report of anger showing the highest heritability. Significant common environmental influences were also found for mother-report of anger and sadness in both univariate and multivariate models. For observed emotion, anger was moderately heritable with no evidence for common environmental variance, but sadness, object fear and social fear all showed modest to moderate common environmental influences and no significant genetic variance. In addition, cholesky decompositions examining genetic and environmental influences across reporter suggested that despite considerable overlap between mother-report and father-report, there was also reporter-specific variance on anger, sadness, and fear. Specifically, there were significant common environmental influences on mother-report of anger- and sadness that were not shared with father-report, and genetic influences on father-report of sadness and fear that were not shared with mother-report. In-home observations were not highly correlated enough with parent-report to support multivariate analysis for any emotion. Finally, according to both mother- and father-report, a single set of genetic and environmental influences was sufficient to account for covariance among all three negative emotions. However, fear was primarily explained by genetic influences not shared with other emotions, and anger also showed considerable emotion-specific genetic variance. In both cases, findings support the value of a more emotion-specific approach to temperament, and highlight the need to consider distinctions as well as commonalities across emotions, reporters and situations.
ContributorsClifford, Sierra (Author) / Lemery, Kathryn (Thesis advisor) / Shiota, Michelle (Committee member) / Eisenberg, Nancy (Committee member) / Arizona State University (Publisher)
Created2013
151796-Thumbnail Image.png
Description
Purpose: This study examines the role of social support on adjustment to widowhood. Past research has indicated that the role of social support on adjustment to widowhood remains inconclusive, and needs further examination. This study examines the varying coping trajectories of middle-aged and retired bereaved spouses. Additionally, this study examines

Purpose: This study examines the role of social support on adjustment to widowhood. Past research has indicated that the role of social support on adjustment to widowhood remains inconclusive, and needs further examination. This study examines the varying coping trajectories of middle-aged and retired bereaved spouses. Additionally, this study examines how bereavement stage may also influence one's adaptation to widowhood. Methods: This study used in-depth and semi-structured interviews as a means of understanding the role of social support on adjustment to widowhood. Participants were recruited through two hospice services available in a major metropolitan area in the United States. Convenient and purposive samplings are used in this study; this study will execute a grounded theory approach in order to determine the inconclusive role of social support on adjustment to widowhood. This study is contrasting between two stages- life course stages (middle aged versus retirement aged people) and bereavement stages (a year or less time following the death of a spouse versus three or more years following the death of a spouse). As a means of reducing bias and subjectivity, all data collected during the interview will be transcribed immediately. Results: Middle-aged bereaved spouses reported higher levels of motivation for adjusting positively and quickly towards widowhood due to their concern for protecting the well-being of their surviving young children compared to retired bereaved spouses. Differences between middle-aged widows and widowers have been found in this study; middle-aged widowers have a higher linkage to negative health behaviors. Retired bereaved spouses may fare better depending upon their housing location. Living in a retirement center may lower negative effects of bereavement on retired spouses' health. Conclusions: Types of social support received and expected varied between middle-aged widows and widowers. Gender norms may influence the type of social support widows and widowers receive. Middle-aged widowers are less likely to receive emotional support which may explain their higher linkage to negative health behaviors. Bereavement stage and housing location may be the key factors that influence widowhood trajectories of retired bereaved spouses. Living in a retirement center may lower the negative effects of bereavement on overall health.
ContributorsRafieei, Noshin (Author) / Kronenfeld, Jennie (Thesis advisor) / Haas, Steven (Committee member) / Damgaard, Anni (Committee member) / Arizona State University (Publisher)
Created2013
151819-Thumbnail Image.png
Description
Research has demonstrated that temperature and relative humidity substantially influence overall perceptions of indoor air quality (Fang, Clausen, & Fanger, 1998). This finding places temperature quality as a high priority, especially for vulnerable adults over 60. Temperature extremes and fluctuation, as well as the perception of those conditions, affect physical

Research has demonstrated that temperature and relative humidity substantially influence overall perceptions of indoor air quality (Fang, Clausen, & Fanger, 1998). This finding places temperature quality as a high priority, especially for vulnerable adults over 60. Temperature extremes and fluctuation, as well as the perception of those conditions, affect physical performance, thermal comfort and health of older adults (Chatonnet & Cabanac, 1965, pp. 185-6; Fumiharu, Watanabe, Park, Shephard, & Aoyagi, 2005; Heijs & Stringer, 1988). The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and the International Organization for Standardization (ISO) have developed thermal-comfort standards for working-age, healthy individuals. None of these standards address the physiological and psychological needs of older adults (ASHRAE Standard 55, 2010; ISO-7730, 2005). This dissertation investigates the impacts of thermal conditions on self-reported health and perceived comfort for older adults, hypothesizing that warmer and more-table indoor thermal conditions will increase the health and perceived comfort of these adults. To this end, a new set of thermal comfort metrics was designed and tested to address the thermal preferences of older adults. The SENIOR COMFORT Metrics 2013 outlined new thresholds for optimal indoor high and low temperatures and set limits on thermal variability over time based on the ASHRAE-55 2010 model. This study was conducted at Sunnyslope Manor, a multi-unit, public-housing complex in the North Phoenix. Nearly 60% (76 of 118) of the residents (aged 62-82) were interviewed using a 110-question, self-reporting survey in 73 apartment units. A total of 40 questions and 20 sub-questions addressing perceptions of comfort, pain, sleep patterns, injuries, and mood were extracted from this larger health condition survey to assess health and thermal comfort. Indoor environmental thermal measurements included temperature in three locations: kitchen, living area, and bedroom and data were recorded every 15 minutes over 5 full days and 448 points. Study results start to indicate that older adults for Sunnyslope Manor preferred temperatures between 76 and 82.5 degrees Fahrenheit and that lower temperatures as outlined by ASHRAE-55 2010 increases the rate of injuries and mood changes in older adults among other findings.
ContributorsFonseca, Ernesto (Author) / Bryan, Harvey (Thesis advisor) / Ahrentzen, Sherry (Committee member) / Shea, Kimberly (Committee member) / Arizona State University (Publisher)
Created2013
Description
Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill

Well-established model systems exist in four out of the seven major classes of vertebrates. These include the mouse, chicken, frog and zebrafish. Noticeably missing from this list is a reptilian model organism for comparative studies between the vertebrates and for studies of biological processes unique to reptiles. To help fill in this gap the green anole lizard, Anolis carolinensis, is being adapted as a model organism. Despite the recent release of the complete genomic sequence of the A. carolinensis, the lizard lacks some resources to aid researchers in their studies. Particularly, the lack of transcriptomic resources for lizard has made it difficult to identify genes complete with alternative splice forms and untranslated regions (UTRs). As part of this work the genome annotation for A. carolinensis was improved through next generation sequencing and assembly of the transcriptomes from 14 different adult and embryonic tissues. This revised annotation of the lizard will improve comparative studies between vertebrates, as well as studies within A. carolinensis itself, by providing more accurate gene models, which provide the bases for molecular studies. To demonstrate the utility of the improved annotations and reptilian model organism, the developmental process of somitogenesis in the lizard was analyzed and compared with other vertebrates. This study identified several key features both divergent and convergent between the vertebrates, which was not previously known before analysis of a reptilian model organism. The improved genome annotations have also allowed for molecular studies of tail regeneration in the lizard. With the annotation of 3' UTR sequences and next generation sequencing, it is now possible to do expressional studies of miRNA and predict their mRNA target transcripts at genomic scale. Through next generation small RNA sequencing and subsequent analysis, several differentially expressed miRNAs were identified in the regenerating tail, suggesting miRNA may play a key role in regulating this process in lizards. Through miRNA target prediction several key biological pathways were identified as potentially under the regulation of miRNAs during tail regeneration. In total, this work has both helped advance A. carolinensis as model system and displayed the utility of a reptilian model system.
ContributorsEckalbar, Walter L (Author) / Kusumi, Kenro (Thesis advisor) / Huentelman, Matthew (Committee member) / Rawls, Jeffery (Committee member) / Wilson-Rawls, Norma (Committee member) / Arizona State University (Publisher)
Created2012
152309-Thumbnail Image.png
Description
Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism

Vertebrate genomes demonstrate a remarkable range of sizes from 0.3 to 133 gigabase pairs. The proliferation of repeat elements are a major genomic expansion. In particular, long interspersed nuclear elements (LINES) are autonomous retrotransposons that have the ability to "cut and paste" themselves into a host genome through a mechanism called target-primed reverse transcription. LINES have been called "junk DNA," "viral DNA," and "selfish" DNA, and were once thought to be parasitic elements. However, LINES, which diversified before the emergence of many early vertebrates, has strongly shaped the evolution of eukaryotic genomes. This thesis will evaluate LINE abundance, diversity and activity in four anole lizards. An intrageneric analysis will be conducted using comparative phylogenetics and bioinformatics. Comparisons within the Anolis genus, which derives from a single lineage of an adaptive radiation, will be conducted to explore the relationship between LINE retrotransposon activity and causal changes in genomic size and composition.
ContributorsMay, Catherine (Author) / Kusumi, Kenro (Thesis advisor) / Gadau, Juergen (Committee member) / Rawls, Jeffery A (Committee member) / Arizona State University (Publisher)
Created2013