This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 336
Filtering by

Clear all filters

151696-Thumbnail Image.png
Description
The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.
ContributorsHeath, Simon (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Bel, James (Thesis advisor) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2013
151931-Thumbnail Image.png
Description
Bully victimization has been associated with blunted cardiovascular responses to stress as well as elevated responses to stress. The difference between these altered physiological responses to stress is largely unknown. This study explored several possible moderators to the relationship between chronic stress and future cardiac output (an indicator of increased

Bully victimization has been associated with blunted cardiovascular responses to stress as well as elevated responses to stress. The difference between these altered physiological responses to stress is largely unknown. This study explored several possible moderators to the relationship between chronic stress and future cardiac output (an indicator of increased stress) in response to future stressors. These moderators include the difference between social and physical stressors and individual levels of loneliness. Participants were administered measures of loneliness and victimization history, and led to anticipate either a "social" (recorded speech) or "non-social" (pain tolerance test ) stressor, neither of which occurred. EKG and impedance cardiography were measured throughout the session. When anticipating both stressors, loneliness and victimization were associated with increased CO. A regression revealed a three-way interaction, with change in cardiac output depending on victimization history, loneliness, and condition in the physical stressor condition. Loneliness magnified the CO output levels of non-bullied individuals when facing a physical stressor. These results suggest that non- bullied participants high in loneliness are more stressed out when facing stressors, particularly stressors that are physically threatening in nature.
ContributorsHaneline, Magen (Author) / Newman, Matt (Thesis advisor) / Salerno, Jessica (Committee member) / Miller, Paul (Committee member) / Arizona State University (Publisher)
Created2013
151967-Thumbnail Image.png
Description
A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of

A fundamental gap in geomorphic scholarship regards fluvial terraces in small desert drainages and those terraces associated with integrating drainages. This dissertation analyzes four field-based case studies within the Sonoran Desert, south-central Arizona, with the overriding purpose of developing a theory to explain the formative processes and spatial distribution of fluvial terraces in the region. Strath terraces are a common form (Chapters 2, 3, 4) and are created at the expense of bounding pediments that occur on the margins of constraining mountainous drainage boundaries (Chapters 1, 2, 3). Base-level fluctuations of the major drainages cause the formation of new straths at lower elevations. Dramatic pediment adjustment and subsequent regrading follows (Chapter 3), where pediments regrade to strath floodplains. This linkage between pediments and their distal straths is termed the pediment-strath relationship. Stability of the base level of the major drainage leads to lateral migration and straths are carved at the expense of bounding pediments through an erosional asymmetry facilitated by differential rock decay between the channel bank and bed. Fill terraces occur within the Salt River drainage basin as a result of the integration processes that connect formerly endorheic basins (Chapter 4). The topographic, spatial, and sedimentologic relationship of the Stewart Mountain terrace (Chapter 4) points to a different genetic origin than the lower terraces in this basin. The high Stewart Mountain fill terrace records the initial integration of this river. The strath terraces inset below the Stewart Mountain terrace are a result of the pediment-strath relationship. These case studies also reveal that the under-addressed drainage processes of piracy and overflow have significant impacts in the evolution of drainages the lead to both strath and fill terrace formation in this region.
ContributorsLarson, Phillip Herman (Author) / Dorn, Ron I (Thesis advisor) / Schmeeckle, Mark (Thesis advisor) / Douglass, John (Committee member) / Cerveny, Randy (Committee member) / Arizona State University (Publisher)
Created2013
151796-Thumbnail Image.png
Description
Purpose: This study examines the role of social support on adjustment to widowhood. Past research has indicated that the role of social support on adjustment to widowhood remains inconclusive, and needs further examination. This study examines the varying coping trajectories of middle-aged and retired bereaved spouses. Additionally, this study examines

Purpose: This study examines the role of social support on adjustment to widowhood. Past research has indicated that the role of social support on adjustment to widowhood remains inconclusive, and needs further examination. This study examines the varying coping trajectories of middle-aged and retired bereaved spouses. Additionally, this study examines how bereavement stage may also influence one's adaptation to widowhood. Methods: This study used in-depth and semi-structured interviews as a means of understanding the role of social support on adjustment to widowhood. Participants were recruited through two hospice services available in a major metropolitan area in the United States. Convenient and purposive samplings are used in this study; this study will execute a grounded theory approach in order to determine the inconclusive role of social support on adjustment to widowhood. This study is contrasting between two stages- life course stages (middle aged versus retirement aged people) and bereavement stages (a year or less time following the death of a spouse versus three or more years following the death of a spouse). As a means of reducing bias and subjectivity, all data collected during the interview will be transcribed immediately. Results: Middle-aged bereaved spouses reported higher levels of motivation for adjusting positively and quickly towards widowhood due to their concern for protecting the well-being of their surviving young children compared to retired bereaved spouses. Differences between middle-aged widows and widowers have been found in this study; middle-aged widowers have a higher linkage to negative health behaviors. Retired bereaved spouses may fare better depending upon their housing location. Living in a retirement center may lower negative effects of bereavement on retired spouses' health. Conclusions: Types of social support received and expected varied between middle-aged widows and widowers. Gender norms may influence the type of social support widows and widowers receive. Middle-aged widowers are less likely to receive emotional support which may explain their higher linkage to negative health behaviors. Bereavement stage and housing location may be the key factors that influence widowhood trajectories of retired bereaved spouses. Living in a retirement center may lower the negative effects of bereavement on overall health.
ContributorsRafieei, Noshin (Author) / Kronenfeld, Jennie (Thesis advisor) / Haas, Steven (Committee member) / Damgaard, Anni (Committee member) / Arizona State University (Publisher)
Created2013
151819-Thumbnail Image.png
Description
Research has demonstrated that temperature and relative humidity substantially influence overall perceptions of indoor air quality (Fang, Clausen, & Fanger, 1998). This finding places temperature quality as a high priority, especially for vulnerable adults over 60. Temperature extremes and fluctuation, as well as the perception of those conditions, affect physical

Research has demonstrated that temperature and relative humidity substantially influence overall perceptions of indoor air quality (Fang, Clausen, & Fanger, 1998). This finding places temperature quality as a high priority, especially for vulnerable adults over 60. Temperature extremes and fluctuation, as well as the perception of those conditions, affect physical performance, thermal comfort and health of older adults (Chatonnet & Cabanac, 1965, pp. 185-6; Fumiharu, Watanabe, Park, Shephard, & Aoyagi, 2005; Heijs & Stringer, 1988). The American Society of Heating, Refrigerating and Air-Conditioning Engineers (ASHRAE) and the International Organization for Standardization (ISO) have developed thermal-comfort standards for working-age, healthy individuals. None of these standards address the physiological and psychological needs of older adults (ASHRAE Standard 55, 2010; ISO-7730, 2005). This dissertation investigates the impacts of thermal conditions on self-reported health and perceived comfort for older adults, hypothesizing that warmer and more-table indoor thermal conditions will increase the health and perceived comfort of these adults. To this end, a new set of thermal comfort metrics was designed and tested to address the thermal preferences of older adults. The SENIOR COMFORT Metrics 2013 outlined new thresholds for optimal indoor high and low temperatures and set limits on thermal variability over time based on the ASHRAE-55 2010 model. This study was conducted at Sunnyslope Manor, a multi-unit, public-housing complex in the North Phoenix. Nearly 60% (76 of 118) of the residents (aged 62-82) were interviewed using a 110-question, self-reporting survey in 73 apartment units. A total of 40 questions and 20 sub-questions addressing perceptions of comfort, pain, sleep patterns, injuries, and mood were extracted from this larger health condition survey to assess health and thermal comfort. Indoor environmental thermal measurements included temperature in three locations: kitchen, living area, and bedroom and data were recorded every 15 minutes over 5 full days and 448 points. Study results start to indicate that older adults for Sunnyslope Manor preferred temperatures between 76 and 82.5 degrees Fahrenheit and that lower temperatures as outlined by ASHRAE-55 2010 increases the rate of injuries and mood changes in older adults among other findings.
ContributorsFonseca, Ernesto (Author) / Bryan, Harvey (Thesis advisor) / Ahrentzen, Sherry (Committee member) / Shea, Kimberly (Committee member) / Arizona State University (Publisher)
Created2013
151328-Thumbnail Image.png
Description
Tempe Terra, Mars, has a complex history marked by volcanism and tectonism. Investigation results presented here build on previous work to better determine the volcanic history of the Tempe volcanic province by identifying and mapping previously undetected vents, characterizing all vents, identifying spatial and temporal trends in eruptive styles, comparing

Tempe Terra, Mars, has a complex history marked by volcanism and tectonism. Investigation results presented here build on previous work to better determine the volcanic history of the Tempe volcanic province by identifying and mapping previously undetected vents, characterizing all vents, identifying spatial and temporal trends in eruptive styles, comparing vent density to similar provinces such as the Snake River Plains of Idaho and Syria Planum and determining absolute age relationships among the volcanic features. Crater size-frequency distribution model ages of 120 Ma to 2.4 Ga indicate the province has been active for over half of the planet's history. During that time, age decreases from southwest to northeast, a trend that parallels the dominant orientation of faulting in the region, providing further evidence that volcanic activity in the region is tectonically controlled (or the tectonics is magmatically controlled). Morphological variation with age hints at an evolving magma source (increasing viscosity) or changing eruption conditions (decreasing eruption rate or eruption through thicker lithosphere).
ContributorsManfredi, Leon (Author) / Clarke, Amanda B (Thesis advisor) / Williams, David A. (Thesis advisor) / Reynolds, Stephen J. (Committee member) / Arizona State University (Publisher)
Created2012
151279-Thumbnail Image.png
Description
The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes

The present understanding of the formation and evolution of the earliest bodies in the Solar System is based in large part on geochemical and isotopic evidences contained within meteorites. The differentiated meteorites (meteorites originating from bodies that have experienced partial to complete melting) are particularly useful for deciphering magmatic processes occurring in the early Solar System. A rare group of differentiated meteorites, the angrites, are uniquely suited for such work. The angrites have ancient crystallization ages, lack secondary processing, and have been minimally affected by shock metamorphism, thus allowing them to retain their initial geochemical and isotopic characteristics at the time of formation. The scarcity of angrite samples made it difficult to conduct comprehensive investigations into the formation history of this unique meteorite group. However, a dramatic increase in the number of angrites recovered in recent years presents the opportunity to expand our understanding of their petrogenesis, as well as further refine our knowledge of the initial isotopic abundances in the early Solar System as recorded by their isotopic systematics. Using a combination of geochemical tools (radiogenic isotope chronometers and trace element chemistry), I have investigated the petrogenetic history of a group of four angrites that sample a range of formation conditions (cooling histories) and crystallization ages. Through isotope ratio measurements, I have examined a comprehensive set of long- and short-lived radiogenic isotope systems (26Al-26Mg, 87Rb-87Sr, 146Sm-142Nd, 147Sm-143Nd, and 176Lu-176Hf) within these four angrites. The results of these measurements provide information regarding crystallization ages, as well as revised estimates for the initial isotopic abundances of several key elements in the early Solar System. The determination of trace element concentrations in individual mineral phases, as well as bulk rock samples, provides important constraints on magmatic processes occurring on the angrite parent body. The measured trace element abundances are used to estimate the composition of the parent melts of individual angrites, examine crystallization conditions, and investigate possible geochemical affinities between various angrites. The new geochemical and isotopic measurements presented here significantly expand our understanding of the geochemical conditions found on the angrite parent body and the environment in which these meteorites formed.
ContributorsSanborn, Matthew E (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Sharp, Thomas (Committee member) / Clarke, Amanda (Committee member) / Williams, Lynda (Committee member) / Carlson, Richard (Committee member) / Arizona State University (Publisher)
Created2012
151290-Thumbnail Image.png
Description
The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They

The presence of a number of extinct radionuclides in the early Solar System (SS) is known from geochemical and isotopic studies of meteorites and their components. The half-lives of these isotopes are short relative to the age of the SS, such that they have now decayed to undetectable levels. They can be inferred to exist in the early SS from the presence of their daughter nuclides in meteoritic materials that formed while they were still extant. The extinct radionuclides are particularly useful as fine-scale chronometers for events in the early SS. They can also be used to help constrain the astrophysical setting of the formation of the SS because their short half-lives and unique formation environments yield information about the sources and timing of delivery of material to the protoplanetary disk. Some extinct radionuclides are considered evidence that the Sun interacted with a massive star (supernova) early in its history. The abundance of 60Fe in the early SS is particularly useful for constraining the astrophysical environment of the Sun's formation because, if present in sufficient abundance, its only likely source is injection from a nearby supernova. The initial SS abundance of 60Fe is poorly constrained at the present time, with estimates varying by 1-2 orders of magnitude. I have determined the 60Fe-60Ni isotope systematics of ancient, well-preserved meteorites using high-precision mass spectrometry to better constrain the initial SS abundance of 60Fe. I find identical estimates of the initial 60Fe abundance from both differentiated basaltic meteorites and from components of primitive chondrites formed in the Solar nebula, which suggest a lower 60Fe abundance than other recent estimates. With recent improved meteorite collection efforts there are more rare ungrouped meteorites being found that hold interesting clues to the origin and evolution of early SS objects. I use the 26Al-26Mg extinct radionuclide chronometer to constrain the ages of several recently recovered meteorites that sample previously unknown asteroid lithologies, including the only know felsic meteorite from an asteroid and two other ungrouped basaltic achondrites. These results help broaden our understanding of the timescales involved in igneous differentiation processes in the early SS.
ContributorsSpivak-Birndorf, Lev (Author) / Wadhwa, Meenakshi (Thesis advisor) / Hervig, Richard (Committee member) / Timmes, Francis (Committee member) / Williams, Lynda (Committee member) / Anbar, Ariel (Committee member) / Arizona State University (Publisher)
Created2012
152269-Thumbnail Image.png
Description
Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between

Sedimentary basins in the Afar Depression, Ethiopia archive the progression of continental breakup, record regional changes in east African climate and volcanism, and host what are arguably the most important fossiliferous strata for studying early human evolution and innovation. Significant changes in rift tectonics, climate, and faunal assemblages occur between 3-2.5 million years ago (Ma), but sediments spanning this time period are sparse. In this dissertation, I present the results of a geologic investigation targeting sediments between 3-2.5 Ma in the central and eastern Ledi Geraru (CLG and ELG) field areas in the lower Awash Valley, using a combination of geologic mapping, stratigraphy, and tephra chemistry and dating. At Gulfaytu in CLG, I mapped the northern-most outcrops of the hominin-bearing Hadar Formation (3.8-2.9 Ma), a 20 m-thick section of flat-lying lacustrine sediments containing 8 new tephras that directly overlie the widespread BKT-2 marker beds (2.95 Ma). Paleolake Hadar persisted after 2.95 Ma, and the presence and characteristics of the Busidima Formation (2.7-0.016 Ma) indicates Gulfaytu was affected by a reversal in depositional basin polarity. Combined with regional and geophysical data, I show the Hadar Formation underlying CLG is >300 m thick, supporting the hypothesis that it was the lower Awash Pliocene depocenter. At ELG, I mapped >300 m of sediments spanning 3.0-2.45 Ma. These sediments coarsen upward and show a progression from fluctuating lake conditions to fluvial landscapes and widespread soil development. This is consistent with the temporal change in depositional environments observed elsewhere in the lower Awash Valley, and suggests that these strata are correlative with the Hadar Formation. Furthermore, the strata and basalts at ELG are highly faulted, and overprinted by shifting extension directions attributed to the northern migration of the Afar triple junction. The presence of fossiliferous beds and stone tools makes ELG a high-priority target for anthropological and archaeological research. This study provides a new temporally-calibrated and high-resolution record of deposition, volcanism, and faulting patterns during a period of significant change in the Afar.
ContributorsDiMaggio, Erin Nicole (Author) / Arrowsmith, J Ramon (Thesis advisor) / Whipple, Kelin X (Committee member) / Heimsath, Arjun M (Committee member) / Clarke, Amanda B (Committee member) / Reed, Kaye E (Committee member) / Arizona State University (Publisher)
Created2013
152419-Thumbnail Image.png
Description
Science, Technology, Engineering & Mathematics (STEM) careers have been touted as critical to the success of our nation and also provide important opportunities for access and equity of underrepresented minorities (URM's). Community colleges serve a diverse population and a large number of undergraduates currently enrolled in college, they are well

Science, Technology, Engineering & Mathematics (STEM) careers have been touted as critical to the success of our nation and also provide important opportunities for access and equity of underrepresented minorities (URM's). Community colleges serve a diverse population and a large number of undergraduates currently enrolled in college, they are well situated to help address the increasing STEM workforce demands. Geoscience is a discipline that draws great interest, but has very low representation of URM's as majors. What factors influence a student's decision to major in the geosciences and are community college students different from research universities in what factors influence these decisions? Through a survey-design mixed with classroom observations, structural equation model was employed to predict a student's intent to persist in introductory geology based on student expectancy for success in their geology class, math self-concept, and interest in the content. A measure of classroom pedagogy was also used to determine if instructor played a role in predicting student intent to persist. The targeted population was introductory geology students participating in the Geoscience Affective Research NETwork (GARNET) project, a national sampling of students in enrolled in introductory geology courses. Results from SEM analysis indicated that interest was the primary predictor in a students intent to persist in the geosciences for both community college and research university students. In addition, self-efficacy appeared to be mediated by interest within these models. Classroom pedagogy impacted how much interest was needed to predict intent to persist, in which as classrooms became more student centered, less interest was required to predict intent to persist. Lastly, math self-concept did not predict student intent to persist in the geosciences, however, it did share variance with self-efficacy and control of learning beliefs, indicating it may play a moderating effect on student interest and self-efficacy. Implications of this work are that while community college students and research university students are different in demographics and content preparation, student-centered instruction continues to be the best way to support student's interest in the sciences. Future work includes examining how math self-concept may play a role in longitudinal persistence in the geosciences.
ContributorsKraft, Katrien J. van der Hoeven (Author) / Husman, Jenefer (Thesis advisor) / Semken, Steven (Thesis advisor) / Baker, Dale R. (Committee member) / McConnell, David (Committee member) / Arizona State University (Publisher)
Created2014