This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

166264-Thumbnail Image.png
Description
The Salt River wild horses are a historic population of unbranded, unclaimed, wild and free-roaming horses, that were born in the wild and merit protection within our National Forest and protection of the Wild Horse and Burro act of 1970. Terms like undomesticated or feral are thrown around in place

The Salt River wild horses are a historic population of unbranded, unclaimed, wild and free-roaming horses, that were born in the wild and merit protection within our National Forest and protection of the Wild Horse and Burro act of 1970. Terms like undomesticated or feral are thrown around in place of “wild”. The past couple of decades or so, there has been an ongoing debate about the current state of the horses on the range. The horses that are along the Salt River, are considered to be state protected and not federally protected, which has sparked a vast discussion on the social, ethical and moral aspects. There has been an overabundance of horses on the range and are causing potential issues to the environment and other farmland. According to the BLM, wild horse and burro populations have a demonstrated ability to grow at 18-20 percent per year. With the widespread and overabundance that is occurring with the horses and burros, it has been said to have a great ecological cost on the rangeland ecosystem by overgrazing native plants, exacerbating invasive establishment and out-competing other ungulates like cattle. Overabundant free-roaming horse and burro populations have large and growing economic and ecological costs for the American public. Without effective management actions, horse and burro populations will double within the next 4-5 years. In this project, with the help of Dr. Julie Murphree, the Salt River Horse Management group and Arizona’s State Liaison for the Department of Agriculture, I conducted various ride-a-longs and conducted my own literature study to further solidify the knowledge I gained when navigating through the Salt River Wild Horse Management group. I can use their data as well as my own observations in the field to catalog their behaviors and look for any signs that would give reason to why this method of population control may or may not be used. I was able to note the horses in their “natural state” which would give me the opportunity to see any behavior changes in various population groups (or otherwise known as Bands). The main objective of this paper is to understand PZP as a population control tool and the effect it has on the Salt River Horses in Arizona.
ContributorsRendon, Chyna (Author) / Murphree, Julie (Thesis director) / Saul, Steven (Committee member) / Barrett, The Honors College (Contributor) / College of Integrative Sciences and Arts (Contributor)
Created2022-05
193362-Thumbnail Image.png
Description
The Northwest (NW) Atlantic porbeagle Lamna nasus is overfished and captured as bycatch in fisheries within the region. A comprehensive understanding of the population’s life history (e.g., reproduction) and habitat use, and the impact of capture with different gear types (e.g., post-release mortality) is needed to ensure effective fisheries management

The Northwest (NW) Atlantic porbeagle Lamna nasus is overfished and captured as bycatch in fisheries within the region. A comprehensive understanding of the population’s life history (e.g., reproduction) and habitat use, and the impact of capture with different gear types (e.g., post-release mortality) is needed to ensure effective fisheries management plans, develop bycatch mitigation strategies, and support stock recovery. This research used satellite tagging technologies to address gaps in knowledge needed to support management and conservation decisions for the NW Atlantic porbeagle. I provided the first estimate of post-release survival and recovery periods for immature porbeagles captured with rod-and-reel. Although survival was high (100%), juvenile porbeagles exhibited a recovery period in surface waters that may make them vulnerable to further fishing interactions. Next, I described the vertical habitat use of young porbeagles to recommend possible fishing modifications to reduce risk of capture. Young porbeagles spent more time in surface waters during summer compared to fall and during the night compared to day, suggesting that risk of capture may be reduced by setting gear deeper during summer and at night when this life stage’s behavior is reduced to the upper water column. Then, I provided an analysis of the seasonal and life stage-based habitat use of porbeagles. Space use was concentrated in continental shelf waters around Cape Cod, Massachusetts regardless of season and life stage. Given the relatively small and static high occupancy area overlaps with a high concentration of fishing activity, this region could be considered for spatial management of the NW Atlantic porbeagle. Finally, I used ultrasonography and satellite tagging to describe the three-dimensional habitat use of gravid porbeagles for the first time. Gravid porbeagles demonstrated seasonal differences in horizontal and vertical habitat use but spent most of the pupping season in waters southeast of Cape Cod or on Georges Bank, suggesting this region may be serving as a pupping ground for at least a portion of this population. Conservation efforts should focus on these important habitats to protect the next generation of porbeagles.
ContributorsAnderson, Brooke Nicole (Author) / Ferry, Lara (Thesis advisor) / Bowlby, Heather (Committee member) / Hammerschlag, Neil (Committee member) / Kang, Yun (Committee member) / Saul, Steven (Committee member) / Sulikowski, James (Committee member) / Arizona State University (Publisher)
Created2024
158321-Thumbnail Image.png
Description
The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British

The Gulf of Mexico (or “Gulf”) is of critical significance to the oil and gas industries’ offshore production, but the potential for accidental petrochemical influx into the Gulf due to such processes is high; two of the largest marine oil spills in history, Pemex's Ixtoc I spill (1979) and British Petroleum's (BP) Deepwater Horizon (2010), have occurred in the region. However, the Gulf is also of critical significance to thousands of unique species, many of which may be irreparably harmed by accidental petrochemical exposure. To better manage the conservation and recovery of marine species in the Gulf ecosystem, a Petrochemical Vulnerability Index was developed to determine the potential impact of a petrochemical influx on Gulf marine fishes, therein providing an objective framework with which to determine the best immediate and long term management strategies for resource managers and decision-makers. The resulting Petrochemical Vulnerability Index (PVI) was developed and applied to all bony fishes and shark/ray species in the Gulf of Mexico (1,670 spp), based on a theoretical petrochemical vulnerability framework developed by peer review. The PVI for fishes embodies three key facets of species vulnerability: likelihood of exposure, individual sensitivity, and population resilience, and comprised of 11 total metrics (Distribution, Longevity, Mobility, Habitat, Pre-Adult Stage Length, Pre-Adult Exposure; Increased Adult Sensitivity Due to UV Light, Increased Pre-Adult Sensitivity Due to UV Light; and Abundance, Reproductive Turnover Rate, Diet/Habitat Specialization). The resulting PVI can be used to guide attention to the species potentially most in need of immediate attention in the event of an oil spill or other petrochemical influx, as well as those species that may require intensive long-term recovery. The scored relative vulnerability rankings can also provide information on species that ought to be the focus of future toxicological research, by indicating which species lack toxicological data, and may potentially experience significant impacts.
ContributorsWoodyard, Megan (Author) / Polidoro, Beth (Thesis advisor) / Saul, Steven (Thesis advisor) / Matson, Cole (Committee member) / Arizona State University (Publisher)
Created2020