This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151001-Thumbnail Image.png
Description
In rehabilitation settings, activity limitation can be a significant barrier to recovery. This study sought to examine the effects of state and trait level benefit finding, positive affect, and catastrophizing on activity limitation among individuals with a physician-confirmed diagnosis of either Osteoarthritis (OA), Fibromyalgia (FM), or a dual diagnosis of

In rehabilitation settings, activity limitation can be a significant barrier to recovery. This study sought to examine the effects of state and trait level benefit finding, positive affect, and catastrophizing on activity limitation among individuals with a physician-confirmed diagnosis of either Osteoarthritis (OA), Fibromyalgia (FM), or a dual diagnosis of OA/FM. Participants (106 OA, 53 FM, and 101 OA/FM) who had no diagnosed autoimmune disorder, a pain rating above 20 on a 0-100 scale, and no involvement in litigation regarding their condition were recruited in the Phoenix metropolitan area for inclusion in the current study. After initial questionnaires were completed, participants were trained to complete daily diaries on a laptop computer and instructed to do so a half an hour before bed each night for 30 days. In each diary, participants rated their average daily pain, benefit finding, positive affect, catastrophizing, and activity limitation. A single item, "I thought about some of the good things that have come from living with my pain" was used to examine the broader construct of benefit finding. It was hypothesized that state and trait level benefit finding would have a direct relation with activity limitation and a partially mediated relationship, through positive affect. Multilevel modeling with SAS PROC MIXED revealed that benefit finding was not directly related to activity limitation. Increases in benefit finding were associated, however, with decreases in activity limitation through a significant mediated relationship with positive affect. Individuals who benefit find had a higher level of positive affect which was associated with decreased activity limitation. A suppression effect involving pain and benefit finding at the trait level was also found. Pain appeared to increase the predictive validity of the relation of benefit finding to activity limitation. These findings have important implications for rehabilitation psychologists and should embolden clinicians to encourage patients to increase positive affect by employing active approach-oriented coping strategies like benefit finding to reduce activity limitation.
ContributorsKinderdietz, Jeffrey Scott (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Barrera, Manuel (Committee member) / Okun, Morris (Committee member) / Arizona State University (Publisher)
Created2012
161315-Thumbnail Image.png
Description
The field of prostheses and rehabilitation devices has seen tremendous advancement since the ’90s. However, the control aspect of the said devices is lacking. The need for mathematical theories to improve the control strategies is apparent. This thesis attempts to bridge the gap by introducing some dynamic system analysis and

The field of prostheses and rehabilitation devices has seen tremendous advancement since the ’90s. However, the control aspect of the said devices is lacking. The need for mathematical theories to improve the control strategies is apparent. This thesis attempts to bridge the gap by introducing some dynamic system analysis and control strategies.Firstly, the human gait dynamics are assumed to be periodic. Lyapunov Floquet theory and Invariant manifold theory are applied. A transformation is obtained onto a simple single degree of freedom oscillator system. The said system is transformed back into the original domain and compared to the original system. The results are discussed and critiqued. Then the technique is applied to the kinematic and kinetic data collected from healthy human subjects to verify the technique’s feasibility. The results show that the technique successfully reconstructed the kinematic and kinetic data. Human gait dynamics are not purely periodic, so a quasi-periodic approach is adopted. Techniques to reduce the order of a quasi-periodic system are studied. Lyapunov-Peron transformation (a surrogate of Lyapunov Floquet transformation for quasi-periodic systems) is studied. The transformed system is easier to control. The inverse of the said transformation is obtained to transform back to the original domain. The application of the techniques to different cases (including externally forced systems) is studied. The reduction of metabolic cost is presented as a viable goal for applying the previously studied control techniques. An experimental protocol is designed and executed to understand periodic assistive forces' effects on human walking gait. Different tether stiffnesses are used to determine the best stiffness for a given subject population. An estimation technique is introduced to obtain the metabolic cost using the center of mass's kinematic data. Lastly, it is concluded that the mathematical techniques can be utilized in a robotic tail-like rehabilitation device. Some possible future research ideas are provided to implement the techniques mentioned in this dissertation.
ContributorsBhat, Sandesh Ganapati (Author) / Redkar, Sangram (Thesis advisor) / Sugar, Thomas G (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2021