This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 4 of 4
Filtering by

Clear all filters

151001-Thumbnail Image.png
Description
In rehabilitation settings, activity limitation can be a significant barrier to recovery. This study sought to examine the effects of state and trait level benefit finding, positive affect, and catastrophizing on activity limitation among individuals with a physician-confirmed diagnosis of either Osteoarthritis (OA), Fibromyalgia (FM), or a dual diagnosis of

In rehabilitation settings, activity limitation can be a significant barrier to recovery. This study sought to examine the effects of state and trait level benefit finding, positive affect, and catastrophizing on activity limitation among individuals with a physician-confirmed diagnosis of either Osteoarthritis (OA), Fibromyalgia (FM), or a dual diagnosis of OA/FM. Participants (106 OA, 53 FM, and 101 OA/FM) who had no diagnosed autoimmune disorder, a pain rating above 20 on a 0-100 scale, and no involvement in litigation regarding their condition were recruited in the Phoenix metropolitan area for inclusion in the current study. After initial questionnaires were completed, participants were trained to complete daily diaries on a laptop computer and instructed to do so a half an hour before bed each night for 30 days. In each diary, participants rated their average daily pain, benefit finding, positive affect, catastrophizing, and activity limitation. A single item, "I thought about some of the good things that have come from living with my pain" was used to examine the broader construct of benefit finding. It was hypothesized that state and trait level benefit finding would have a direct relation with activity limitation and a partially mediated relationship, through positive affect. Multilevel modeling with SAS PROC MIXED revealed that benefit finding was not directly related to activity limitation. Increases in benefit finding were associated, however, with decreases in activity limitation through a significant mediated relationship with positive affect. Individuals who benefit find had a higher level of positive affect which was associated with decreased activity limitation. A suppression effect involving pain and benefit finding at the trait level was also found. Pain appeared to increase the predictive validity of the relation of benefit finding to activity limitation. These findings have important implications for rehabilitation psychologists and should embolden clinicians to encourage patients to increase positive affect by employing active approach-oriented coping strategies like benefit finding to reduce activity limitation.
ContributorsKinderdietz, Jeffrey Scott (Author) / Zautra, Alex (Thesis advisor) / Davis, Mary (Committee member) / Barrera, Manuel (Committee member) / Okun, Morris (Committee member) / Arizona State University (Publisher)
Created2012
133398-Thumbnail Image.png
Description
Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic

Skin and muscle receptors in the leg and foot provide able-bodied humans with force and position information that is crucial for balance and movement control. In lower-limb amputees however, this vital information is either missing or incomplete. Amputees typically compensate for the loss of sensory information by relying on haptic feedback from the stump-socket interface. Unfortunately, this is not an adequate substitute. Areas of the stump that directly interface with the socket are also prone to painful irritation, which further degrades haptic feedback. The lack of somatosensory feedback from prosthetic legs causes several problems for lower-limb amputees. Previous studies have established that the lack of adequate sensory feedback from prosthetic limbs contributes to poor balance and abnormal gait kinematics. These improper gait kinematics can, in turn, lead to the development of musculoskeletal diseases. Finally, the absence of sensory information has been shown to lead to steeper learning curves and increased rehabilitation times, which hampers amputees from recovering from the trauma. In this study, a novel haptic feedback system for lower-limb amputees was develped, and studies were performed to verify that information presented was sufficiently accurate and precise in comparison to a Bertec 4060-NC force plate. The prototype device consisted of a sensorized insole, a belt-mounted microcontroller, and a linear array of four vibrotactile motors worn on the thigh. The prototype worked by calculating the center of pressure in the anteroposterior plane, and applying a time-discrete vibrotactile stimulus based on the location of the center of pressure.
ContributorsKaplan, Gabriel Benjamin (Author) / Abbas, James (Thesis director) / McDaniel, Troy (Committee member) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2018-05
171649-Thumbnail Image.png
Description
One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there

One of the long-standing issues that has arisen in the sports medicine field is identifying the ideal methodology to optimize recovery following anterior cruciate ligament reconstruction (ACLR). The perioperative period for ACLR is notoriously heterogeneous in nature as it consists of many variables that can impact surgical outcomes. While there has been extensive literature published regarding the efficacy of various recovery and rehabilitation topics, it has been widely acknowledged that certain modalities within the field of ACLR rehabilitation need further high-quality evidence to support their use in clinical practice, such as blood flow restriction (BFR) training. BFR training involves the application of a tourniquet-like cuff to the proximal aspect of a limb prior to exercise; the cuff is inflated so that it occludes venous flow but allows arterial inflow. BFR is usually combined with low-intensity (LI) resistance training, with resistance as low as 20% of one-repetition maximum (1RM). LI-BFR has been used as an emerging clinical modality to combat postoperative atrophy of the quadriceps muscles for those who have undergone ACLR, as these individuals cannot safely tolerate high muscular tension exercise after surgery. Impairments of the quadriceps are the major cause of poor functional status of patients following an otherwise successful ACLR procedure; however, these impairments can be mitigated with preoperative rehabilitation done before surgery. It was hypothesized that the use of a preoperative LI-BFR training protocol could help improve postoperative outcomes following ACLR; primarily, strength and hypertrophy of the quadriceps. When compared with a SHAM control group, subjects who were randomized to a BFR intervention group made greater preoperative strength gains in the quadriceps and recovered quadriceps mass at an earlier timepoint than that of the SHAM group aftersurgery; however, the gains made in strength were not able to be maintained in the 8-week postoperative period. While these results do not support the use of LI-BFR from the short-term perspective after ACLR, follow-up data will be used to investigate trends in re-injury and return to sport rates to evaluate the efficacy of the use of LI-BFR from a long-term perspective.
ContributorsGlattke, Kaycee Elizabeth (Author) / Lockhart, Thurmon (Thesis advisor) / McDaniel, Troy (Committee member) / Banks, Scott (Committee member) / Peterson, Daniel (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2022
171660-Thumbnail Image.png
Description
With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies

With an aging population, the number of later in life health related incidents like stroke stand to become more prevalent. Unfortunately, the majority those who are most at risk for debilitating heath episodes are either uninsured or under insured when it comes to long term physical/occupational therapy. As insurance companies lower coverage and/or raise prices of plans with sufficient coverage, it can be expected that the proportion of uninsured/under insured to fully insured people will rise. To address this, lower cost alternative methods of treatment must be developed so people can obtain the treated required for a sufficient recovery. The presented robotic glove employs low cost fabric soft pneumatic actuators which use a closed loop feedback controller based on readings from embedded soft sensors. This provides the device with proprioceptive abilities for the dynamic control of each independent actuator. Force and fatigue tests were performed to determine the viability of the actuator design. A Box and Block test along with a motion capture study was completed to study the performance of the device. This paper presents the design and classification of a soft robotic glove with a feedback controller as a at-home stroke rehabilitation device.
ContributorsAxman, Reed C (Author) / Zhang, Wenlong (Thesis advisor) / Santello, Marco (Committee member) / McDaniel, Troy (Committee member) / Arizona State University (Publisher)
Created2022