This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151220-Thumbnail Image.png
Description
Adverse childhood family environments have been found to have long-term effects on a child's well-being. Although no prior studies have examined the direct effects of childhood family adversities on nighttime blood pressure (BP) dip, parental death and divorce in childhood, have been associated with a variety of related psychological problems

Adverse childhood family environments have been found to have long-term effects on a child's well-being. Although no prior studies have examined the direct effects of childhood family adversities on nighttime blood pressure (BP) dip, parental death and divorce in childhood, have been associated with a variety of related psychological problems in adulthood. The current study examined the direct effects of parental death and divorce in childhood and quality of early family relationships on adult nighttime BP dip as well as the mediating role of three psychosocial factors (depression, hostility and social stress). One hundred and forty-three young adults were asked to complete self-reported measures of the three psychosocial factors and quality of family relationships. Study participants wore an ambulatory blood pressure (ABP) monitor over a 24-hr period in order to assess nocturnal BP dip. Although neither childhood family adversity nor quality of childhood family relationships directly predicted nighttime BP dipping, quality of early family relationships predicted all three psychosocial factors, and hostility was found to mediate the relationship between quality of childhood family relationships and nighttime systolic BP dip. Early family experiences play an important role in influencing nighttime cardiovascular functioning by influencing an individual's psychological functioning in young adulthood. Because nighttime non-dipping has been associated with increased risk for cardiovascular disease and other serious health conditions, the results of the present study have important clinical implications and provide specific psychosocial pathways that may be targeted in future programs designed to prevent and treat cardiovascular disease.
ContributorsTanaka, Rika (Author) / Luecken, Linda J. (Thesis advisor) / Wolchik, Sharlene (Committee member) / Davis, Mary (Committee member) / Arizona State University (Publisher)
Created2012
131932-Thumbnail Image.png
Description
Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of

Birds maintain resting plasma glucose concentrations (pGlu) nearly twice that of comparably sized mammals. Despite this, birds do not incur much of the oxidative tissue damage that might be expected from a high pGlu. Their ability to stave off oxidative damage allows birds to serve as a negative model of hyperglycemia-related complications, making them ideal for the development of new diabetes treatments with the potential for human application. Previous studies conducted by the Sweazea Lab at Arizona State University aimed to use diet as a means to raise blood glucose in mourning doves (Zenaida macroura) in order to better understand the mechanisms they utilize to stave off oxidative damage. These protocols used dietary interventions—a 60% high fat (HF) “chow” diet, and a high carbohydrate (HC) white bread diet—but were unsuccessful in inducing pathologies. Based on this research, we hypothesized that a model of an urban diet (high in fat, refined carbohydrates, and sodium) might impair vasodilation, as the effect of this diet on birds is currently unknown. We found that tibial vasodilation was significantly impaired in birds fed an urban diet compared to those fed a seed diet. Unexpectedly, vasodilation in the urban diet group was comparable to data of wild-caught birds from previous research, possibly indicating that the birds had already been eating a diet similar to this study’s urban diet before they were caught. This may constitute evidence that the seed diet improved vasodilation while the urban diet more closely mimicked the diet of the birds before the trial, suggesting that the model of the urban diet acted as the control diet in this context. This study is the first step in elucidating avian mechanisms for dealing with diabetogenic diets and has potential to aid in the development of treatments for humans with metabolic syndrome.
ContributorsRenner, Michael William (Author) / Sweazea, Karen (Thesis director) / Johnston, Carol (Committee member) / Basile, Anthony (Committee member) / Dean, W.P. Carey School of Business (Contributor) / School of Life Sciences (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05