This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 51
Filtering by

Clear all filters

148001-Thumbnail Image.png
Description

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many

High-entropy alloys possessing mechanical, chemical, and electrical properties that far exceed those of conventional alloys have the potential to make a significant impact on many areas of engineering. Identifying element combinations and configurations to form these alloys, however, is a difficult, time-consuming, computationally intensive task. Machine learning has revolutionized many different fields due to its ability to generalize well to different problems and produce computationally efficient, accurate predictions regarding the system of interest. In this thesis, we demonstrate the effectiveness of machine learning models applied to toy cases representative of simplified physics that are relevant to high-entropy alloy simulation. We show these models are effective at learning nonlinear dynamics for single and multi-particle cases and that more work is needed to accurately represent complex cases in which the system dynamics are chaotic. This thesis serves as a demonstration of the potential benefits of machine learning applied to high-entropy alloy simulations to generate fast, accurate predictions of nonlinear dynamics.

ContributorsDaly, John H (Author) / Ren, Yi (Thesis director) / Zhuang, Houlong (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
147738-Thumbnail Image.png
Description

Covid-19 is unlike any coronavirus we have seen before, characterized mostly by the ease with which it spreads. This analysis utilizes an SEIR model built to accommodate various populations to understand how different testing and infection rates may affect hospitalization and death. This analysis finds that infection rates have a

Covid-19 is unlike any coronavirus we have seen before, characterized mostly by the ease with which it spreads. This analysis utilizes an SEIR model built to accommodate various populations to understand how different testing and infection rates may affect hospitalization and death. This analysis finds that infection rates have a significant impact on Covid-19 impact regardless of the population whereas the impact that testing rates have in this simulation is not as pronounced. Thus, policy-makers should focus on decreasing infection rates through targeted lockdowns and vaccine rollout to contain the virus, and decrease its spread.

Created2021-05
148419-Thumbnail Image.png
Description

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from

Currently, autonomous vehicles are being evaluated by how well they interact with humans without evaluating how well humans interact with them. Since people are not going to unanimously switch over to using autonomous vehicles, attention must be given to how well these new vehicles signal intent to human drivers from the driver’s point of view. Ineffective communication will lead to unnecessary discomfort among drivers caused by an underlying uncertainty about what an autonomous vehicle is or isn’t about to do. Recent studies suggest that humans tend to fixate on areas of higher uncertainty so scenarios that have a higher number of vehicle fixations can be reasoned to be more uncertain. We provide a framework for measuring human uncertainty and use the framework to measure the effect of empathetic vs non-empathetic agents. We used a simulated driving environment to create recorded scenarios and manipulate the autonomous vehicle to include either an empathetic or non-empathetic agent. The driving interaction is composed of two vehicles approaching an uncontrolled intersection. These scenarios were played to twelve participants while their gaze was recorded to track what the participants were fixating on. The overall intent was to provide an analytical framework as a tool for evaluating autonomous driving features; and in this case, we choose to evaluate how effective it was for vehicles to have empathetic behaviors included in the autonomous vehicle decision making. A t-test analysis of the gaze indicated that empathy did not in fact reduce uncertainty although additional testing of this hypothesis will be needed due to the small sample size.

ContributorsGreenhagen, Tanner Patrick (Author) / Yang, Yezhou (Thesis director) / Jammula, Varun C (Committee member) / Computer Science and Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
148437-Thumbnail Image.png
Description

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid.

A novel CFD algorithm called LEAP is currently being developed by the Kasbaoui Research Group (KRG) using the Immersed Boundary Method (IBM) to describe complex geometries. To validate the algorithm, this research project focused on testing the algorithm in three dimensions by simulating a sphere placed in a moving fluid. The simulation results were compared against the experimentally derived Schiller-Naumann Correlation. Over the course of 36 trials, various spatial and temporal resolutions were tested at specific Reynolds numbers between 10 and 300. It was observed that numerical errors decreased with increasing spatial and temporal resolution. This result was expected as increased resolution should give results closer to experimental values. Having shown the accuracy and robustness of this method, KRG will continue to develop this algorithm to explore more complex geometries such as aircraft engines or human lungs.

ContributorsMadden, David Jackson (Author) / Kasbaoui, Mohamed Houssem (Thesis director) / Herrmann, Marcus (Committee member) / Mechanical and Aerospace Engineering Program (Contributor, Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
Description

To understand the role communication and effective management play in the project management field, virtual work was analyzed in two phases. Phase one consisted of gaining familiarity within the field of project management by interviewing three project managers who discussed their field of work, how it has changed due to

To understand the role communication and effective management play in the project management field, virtual work was analyzed in two phases. Phase one consisted of gaining familiarity within the field of project management by interviewing three project managers who discussed their field of work, how it has changed due to Covid-19, approaches to communication and virtual team management, and strategies that allow for effective project management. Phase two comprised a simulation in which 8 ASU student volunteers were put into scenarios that required completing and executing a given project. Students gained project experience through the simulation and had an opportunity to reflect on their project experience.

ContributorsSandhu, Shiwani K (Author) / Kassing, Jeff (Thesis director) / Pandya, Bankim (Committee member) / College of Integrative Sciences and Arts (Contributor) / School of Social and Behavioral Sciences (Contributor) / Thunderbird School of Global Management (Contributor) / Barrett, The Honors College (Contributor)
Created2021-05
131113-Thumbnail Image.png
Description
Smallsats such as CubeSats have a variety of growing applications in low Earth orbit (LEO), near Earth orbit (NEO), and deep space environments across communications, imaging, and more. Such applications have tight pointing requirements and thus an accompanying need for attitude control systems (ACS) with finer pointing capabilities and longer

Smallsats such as CubeSats have a variety of growing applications in low Earth orbit (LEO), near Earth orbit (NEO), and deep space environments across communications, imaging, and more. Such applications have tight pointing requirements and thus an accompanying need for attitude control systems (ACS) with finer pointing capabilities and longer lifetimes. Current systems such as magnetorquers and reaction wheels have notable limitations. Magnetorquers lose applicability for many deep space applications while the latter is dependent on moving components and cannot be operated independently due to momentum saturation among other limitations. Micro-Pulsed Plasma Thrusters (μPPTs) can be designed for multi-axis control in space. The use of solid Teflon (PTFE) propellant to produce a controllably small impulse within the thrusters can enable increased fine pointing accuracy and precision. In this paper, a preliminary design of an 8-thruster set of breech-fed μPPTs is analyzed through mechanical simulation tools to address challenges posed by miniaturization into a 1U module. Mechanical challenges of miniaturizing a μPPT module are particularly driven by the volume constraint and the associated appropriate mass. Thermal analysis performed using C&R Thermal Desktop, addresses the thermal environment for various use cases, individual component heating, as well as heat transfer through the module. This directly informs component layout recommendations and thermal controls based upon maintaining operational temperature ranges for various use cases. This model as well as fabrication considerations inform material selections for various structures in the preliminary μPPT design. In this paper I will discuss the overall design of the PPT model that has been configured here at Arizona State University by the Sun Devil Satellite Laboratory. I will then discuss the findings of my thermal analysis that was performed using Thermal Desktop.
ContributorsArnest, Dylan (Author) / Benson, David (Thesis director) / Acuna, Antonio (Committee member) / Mechanical and Aerospace Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
DescriptionThis document explains the design of a traffic simulator based on an integral-based state machine. This simulator is different from existing traffic simulators because it is driven by a flexible model that supports many different light configurations and has a user-friendly interface.
ContributorsSapp, Curtis Mark (Author) / Gaffar, Ashraf (Thesis director) / Gonzalez Sanchez, Javier (Committee member) / Software Engineering (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05
132380-Thumbnail Image.png
Description
Research indicates that over 7.7% of adults who seek medical care every year at a hospital report a delay in receiving care, having difficulty receiving care, or being unable to receive care due to long waiting times (Kennedy et al. 2004). This continue to stir the need for researchers to

Research indicates that over 7.7% of adults who seek medical care every year at a hospital report a delay in receiving care, having difficulty receiving care, or being unable to receive care due to long waiting times (Kennedy et al. 2004). This continue to stir the need for researchers to explore ways to extend healthcare services in minimal waiting times. This thesis research utilizes Arena, a discrete event simulation software, to analyze waiting times in a typical hospital setting. It goes on to explore the impact of cross training of hospital personnel in meeting the critical needs of patients while minimizing waiting times. Simulation output data were analyzed, and cross training was found to have significant impact on reducing waiting time when: intake of patients is higher than current (original) arrival rate, intake of appointment patients is highest, or intake of emergency patience is highest of the three patient categories.
ContributorsBusisi, Jeanbat (Author) / Theodore, Pavlic (Thesis director) / Feng, Ju (Committee member) / Industrial, Systems & Operations Engineering Prgm (Contributor) / Barrett, The Honors College (Contributor)
Created2019-05
132094-Thumbnail Image.png
Description
With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

With the revolution of low-cost microelectronics, rotary-wing vehicles have grown increasingly popular and important in the past two decades. With increased interest in quadcopters comes the need to for a systematic and rigorous framework to model, analyze, control, and design them. This thesis presents the beginning of such a framework.

The work presents the nonlinear equations of motion of a quadcopter. This includes the translational and rotational equations of motion, as well as an analysis of the nonlinear actuator dynamics. The work then analyzes the static properties of a quadcopter in forward flight equilibrium and shows how static properties change as physical properties of the vehicle are varied. Next, the dynamics of forward flight are linearized, and a dynamic analysis is provided.

After dynamic analysis, the work shows detailed hierarchical control system design trade studies, which includes attitude and translational inner-outer loop control. Among other designs, the following are presented: PD control, proportional control, pole-placement control. Each of these control architectures are employed for the inner loops and outer loops. The work also analyzes linear versus nonlinear simulation performance of a quadcopter, specifically for a step x-axis reference command. It is found that the nonlinear dynamics of the actuator cause significant discrepancy between linear and nonlinear simulation.

Finally, this thesis establishes directions for future graduate research. This includes hardware design, as well as moving toward design of a highly-maneuverable thrust-vectoring quadrotor which will be the focus of the proposed graduate PhD research. In summary, this thesis provides the beginning of a cohesive framework to model, analyze, control, and design quadcopters. It also lays the groundwork for graduate research and beyond.
ContributorsWallace, Brent (Author) / Rodriguez, Armando (Thesis director) / Berman, Spring (Committee member) / Electrical Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2019-12
131675-Thumbnail Image.png
Description
The Migration Framework and Simulator is a combination of C# framework / library and Unity simulation tool used for studying basic migration patterns across the US. Users interact with the
Unity simulation tool by implementing political policies or adjusting values via sliders, buttons, etc., which will alter the values in the

The Migration Framework and Simulator is a combination of C# framework / library and Unity simulation tool used for studying basic migration patterns across the US. Users interact with the
Unity simulation tool by implementing political policies or adjusting values via sliders, buttons, etc., which will alter the values in the framework. The user can then use the simulation interface to view different estimated population values for categories of people, such as regional differences, education levels, and more.
ContributorsLarsen, Joseph (Co-author) / Spangler, Braydon (Co-author) / Kobayashi, Yoshihiro (Thesis director) / Nelson, Brian (Committee member) / Computing and Informatics Program (Contributor) / Computer Science and Engineering Program (Contributor) / Barrett, The Honors College (Contributor)
Created2020-05