This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

154734-Thumbnail Image.png
Description
The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably

The human motion is defined as an amalgamation of several physical traits such as bipedal locomotion, posture and manual dexterity, and mental expectation. In addition to the “positive” body form defined by these traits, casting light on the body produces a “negative” of the body: its shadow. We often interchangeably use with silhouettes in the place of shadow to emphasize indifference to interior features. In a manner of speaking, the shadow is an alter ego that imitates the individual.

The principal value of shadow is its non-invasive behaviour of reflecting precisely the actions of the individual it is attached to. Nonetheless we can still think of the body’s shadow not as the body but its alter ego.

Based on this premise, my thesis creates an experiential system that extracts the data related to the contour of your human shape and gives it a texture and life of its own, so as to emulate your movements and postures, and to be your extension. In technical terms, my thesis extracts abstraction from a pre-indexed database that could be generated from an offline data set or in real time to complement these actions of a user in front of a low-cost optical motion capture device like the Microsoft Kinect. This notion could be the system’s interpretation of the action which creates modularized art through the abstraction’s ‘similarity’ to the live action.

Through my research, I have developed a stable system that tackles various connotations associated with shadows and the need to determine the ideal features that contribute to the relevance of the actions performed. The implication of Factor Oracle [3] pattern interpretation is tested with a feature bin of videos. The system also is flexible towards several methods of Nearest Neighbours searches and a machine learning module to derive the same output. The overall purpose is to establish this in real time and provide a constant feedback to the user. This can be expanded to handle larger dynamic data.

In addition to estimating human actions, my thesis best tries to test various Nearest Neighbour search methods in real time depending upon the data stream. This provides a basis to understand varying parameters that complement human activity recognition and feature matching in real time.
ContributorsSeshasayee, Sudarshan Prashanth (Author) / Sha, Xin Wei (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Tinapple, David A (Committee member) / Arizona State University (Publisher)
Created2016
154633-Thumbnail Image.png
Description
This thesis aims to explore the language of different bodies in the field of dance by analyzing

the habitual patterns of dancers from different backgrounds and vernaculars. Contextually,

the term habitual patterns is defined as the postures or poses that tend to re-appear,

often unintentionally, as the dancer performs improvisational dance. The focus

This thesis aims to explore the language of different bodies in the field of dance by analyzing

the habitual patterns of dancers from different backgrounds and vernaculars. Contextually,

the term habitual patterns is defined as the postures or poses that tend to re-appear,

often unintentionally, as the dancer performs improvisational dance. The focus lies in exposing

the movement vocabulary of a dancer to reveal his/her unique fingerprint.

The proposed approach for uncovering these movement patterns is to use a clustering

technique; mainly k-means. In addition to a static method of analysis, this paper uses

an online method of clustering using a streaming variant of k-means that integrates into

the flow of components that can be used in a real-time interactive dance performance. The

computational system is trained by the dancer to discover identifying patterns and therefore

it enables a feedback loop resulting in a rich exchange between dancer and machine. This

can help break a dancer’s tendency to create similar postures, explore larger kinespheric

space and invent movement beyond their current capabilities.

This paper describes a project that distinguishes itself in that it uses a custom database

that is curated for the purpose of highlighting the similarities and differences between various

movement forms. It puts particular emphasis on the process of choosing source movement

qualitatively, before the technological capture process begins.
ContributorsIyengar, Varsha (Author) / Xin Wei, Sha (Thesis advisor) / Turaga, Pavan (Committee member) / Coleman, Grisha (Committee member) / Arizona State University (Publisher)
Created2016
158890-Thumbnail Image.png
Description
Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In

Open Design is a crowd-driven global ecosystem which tries to challenge and alter contemporary modes of capitalistic hardware production. It strives to build on the collective skills, expertise and efforts of people regardless of their educational, social or political backgrounds to develop and disseminate physical products, machines and systems. In contrast to capitalistic hardware production, Open Design practitioners publicly share design files, blueprints and knowhow through various channels including internet platforms and in-person workshops. These designs are typically replicated, modified, improved and reshared by individuals and groups who are broadly referred to as ‘makers’.

This dissertation aims to expand the current scope of Open Design within human-computer interaction (HCI) research through a long-term exploration of Open Design’s socio-technical processes. I examine Open Design from three perspectives: the functional—materials, tools, and platforms that enable crowd-driven open hardware production, the critical—materially-oriented engagements within open design as a site for sociotechnical discourse, and the speculative—crowd-driven critical envisioning of future hardware.

More specifically, this dissertation first explores the growing global scene of Open Design through a long-term ethnographic study of the open science hardware (OScH) movement, a genre of Open Design. This long-term study of OScH provides a focal point for HCI to deeply understand Open Design's growing global landscape. Second, it examines the application of Critical Making within Open Design through an OScH workshop with designers, engineers, artists and makers from local communities. This work foregrounds the role of HCI researchers as facilitators of collaborative critical engagements within Open Design. Third, this dissertation introduces the concept of crowd-driven Design Fiction through the development of a publicly accessible online Design Fiction platform named Dream Drones. Through a six month long development and a study with drone related practitioners, it offers several pragmatic insights into the challenges and opportunities for crowd-driven Design Fiction. Through these explorations, I highlight the broader implications and novel research pathways for HCI to shape and be shaped by the global Open Design movement.
ContributorsFernando, Kattak Kuttige Rex Piyum (Author) / Kuznetsov, Anastasia (Thesis advisor) / Turaga, Pavan (Committee member) / Middel, Ariane (Committee member) / Takamura, John (Committee member) / Arizona State University (Publisher)
Created2020