This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 543
Filtering by

Clear all filters

150059-Thumbnail Image.png
Description
Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing

Dynamic loading is the term used for one way of optimally loading a transformer. Dynamic loading means the utility takes into account the thermal time constant of the transformer along with the cooling mode transitions, loading profile and ambient temperature when determining the time-varying loading capability of a transformer. Knowing the maximum dynamic loading rating can increase utilization of the transformer while not reducing life-expectancy, delaying the replacement of the transformer. This document presents the progress on the transformer dynamic loading project sponsored by Salt River Project (SRP). A software application which performs dynamic loading for substation distribution transformers with appropriate transformer thermal models is developed in this project. Two kinds of thermal hottest-spot temperature (HST) and top-oil temperature (TOT) models that will be used in the application--the ASU HST/TOT models and the ANSI models--are presented. Brief validations of the ASU models are presented, showing that the ASU models are accurate in simulating the thermal processes of the transformers. For this production grade application, both the ANSI and the ASU models are built and tested to select the most appropriate models to be used in the dynamic loading calculations. An existing application to build and select the TOT model was used as a starting point for the enhancements developed in this work. These enhancements include:  Adding the ability to develop HST models to the existing application,  Adding metrics to evaluate the models accuracy and selecting which model will be used in dynamic loading calculation  Adding the capability to perform dynamic loading calculations,  Production of a maximum dynamic load profile that the transformer can tolerate without acceleration of the insulation aging,  Provide suitable output (plots and text) for the results of the dynamic loading calculation. Other challenges discussed include: modification to the input data format, data-quality control, cooling mode estimation. Efforts to overcome these challenges are discussed in this work.
ContributorsLiu, Yi (Author) / Tylavksy, Daniel J (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
149707-Thumbnail Image.png
Description
Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas

Emission of CO2 into the atmosphere has become an increasingly concerning issue as we progress into the 21st century Flue gas from coal-burning power plants accounts for 40% of all carbon dioxide emissions. The key to successful separation and sequestration is to separate CO2 directly from flue gas (10-15% CO2, 70% N2), which can range from a few hundred to as high as 1000°C. Conventional microporous membranes (carbons/silicas/zeolites) are capable of separating CO2 from N2 at low temperatures, but cannot achieve separation above 200°C. To overcome the limitations of microporous membranes, a novel ceramic-carbonate dual-phase membrane for high temperature CO2 separation was proposed. The membrane was synthesized from porous La0.6Sr0.4Co0.8Fe0.2O3-d (LSCF) supports and infiltrated with molten carbonate (Li2CO3/Na2CO3/K2CO3). The CO2 permeation mechanism involves a reaction between CO2 (gas phase) and O= (solid phase) to form CO3=, which is then transported through the molten carbonate (liquid phase) to achieve separation. The effects of membrane thickness, temperature and CO2 partial pressure were studied. Decreasing thickness from 3.0 to 0.375 mm led to higher fluxes at 900°C, ranging from 0.186 to 0.322 mL.min-1.cm-2 respectively. CO2 flux increased with temperature from 700 to 900°C. Activation energy for permeation was similar to that for oxygen ion conduction in LSCF. For partial pressures above 0.05 atm, the membrane exhibited a nearly constant flux. From these observations, it was determined that oxygen ion conductivity limits CO2 permeation and that the equilibrium oxygen vacancy concentration in LSCF is dependent on the partial pressure of CO2 in the gas phase. Finally, the dual-phase membrane was used as a membrane reactor. Separation at high temperatures can produce warm, highly concentrated streams of CO2 that could be used as a chemical feedstock for the synthesis of syngas (H2 + CO). Towards this, three different membrane reactor configurations were examined: 1) blank system, 2) LSCF catalyst and 3) 10% Ni/y-alumina catalyst. Performance increased in the order of blank system < LSCF catalyst < Ni/y-alumina catalyst. Favorable conditions for syngas production were high temperature (850°C), low sweep gas flow rate (10 mL.min-1) and high methane concentration (50%) using the Ni/y-alumina catalyst.
ContributorsAnderson, Matthew Brandon (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Rege, Kaushal (Committee member) / Anderson, James (Committee member) / Rivera, Daniel (Committee member) / Arizona State University (Publisher)
Created2011
149997-Thumbnail Image.png
Description
This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower

This thesis pursues a method to deregulate the electric distribution system and provide support to distributed renewable generation. A locational marginal price is used to determine prices across a distribution network in real-time. The real-time pricing may provide benefits such as a reduced electricity bill, decreased peak demand, and lower emissions. This distribution locational marginal price (D-LMP) determines the cost of electricity at each node in the electrical network. The D-LMP is comprised of the cost of energy, cost of losses, and a renewable energy premium. The renewable premium is an adjustable function to compensate `green' distributed generation. A D-LMP is derived and formulated from the PJM model, as well as several alternative formulations. The logistics and infrastructure an implementation is briefly discussed. This study also takes advantage of the D-LMP real-time pricing to implement distributed storage technology. A storage schedule optimization is developed using linear programming. Day-ahead LMPs and historical load data are used to determine a predictive optimization. A test bed is created to represent a practical electric distribution system. Historical load, solar, and LMP data are used in the test bed to create a realistic environment. A power flow and tabulation of the D-LMPs was conducted for twelve test cases. The test cases included various penetrations of solar photovoltaics (PV), system networking, and the inclusion of storage technology. Tables of the D-LMPs and network voltages are presented in this work. The final costs are summed and the basic economics are examined. The use of a D-LMP can lower costs across a system when advanced technologies are used. Storage improves system costs, decreases losses, improves system load factor, and bolsters voltage. Solar energy provides many of these same attributes at lower penetrations, but high penetrations have a detrimental effect on the system. System networking also increases these positive effects. The D-LMP has a positive impact on residential customer cost, while greatly increasing the costs for the industrial sector. The D-LMP appears to have many positive impacts on the distribution system but proper cost allocation needs further development.
ContributorsKiefer, Brian Daniel (Author) / Heydt, Gerald T (Thesis advisor) / Shunk, Dan (Committee member) / Hedman, Kory (Committee member) / Arizona State University (Publisher)
Created2011
150043-Thumbnail Image.png
Description
The increasing isolation and segregation of children in American cities and suburbs is of special significance. This has meant a loss of freedom for children to explore their neighborhood and city as they get older, their exclusion from varied contacts with diverse adults in a variety of settings, and their

The increasing isolation and segregation of children in American cities and suburbs is of special significance. This has meant a loss of freedom for children to explore their neighborhood and city as they get older, their exclusion from varied contacts with diverse adults in a variety of settings, and their consequent inability to learn from personal experience and observation, so essential to social and emotional development. The purpose of this study is to measure the differences in child-friendliness between neighborhoods with different income levels by developing an indicator framework that can be used by planning departments and other local authorities based on available data. The research also focus on what other factor (besides income) influences child-friendliness in a city at the neighborhood level. If a relationship does exist, how big is the difference in terms of child-friendliness between low-income and high-income neighborhoods, and what indicators play the most important role in creating the difference? Neighborhoods in the city of Glendale, Arizona serve as case studies to aid in refining the assessment method, and show the potential for how cities can become more child-friendly. The neighborhoods were selected based on income, same size and different location.
ContributorsRakhimova, Nelya (Author) / Stein, Jay (Thesis advisor) / Pijawka, David (Committee member) / Crewe, Katherine (Committee member) / Arizona State University (Publisher)
Created2011
150045-Thumbnail Image.png
Description
A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research

A relatively simple subset of nanotechnology - nanofluids - can be obtained by adding nanoparticles to conventional base fluids. The promise of these fluids stems from the fact that relatively low particle loadings (typically <1% volume fractions) can significantly change the properties of the base fluid. This research explores how low volume fraction nanofluids, composed of common base-fluids, interact with light energy. Comparative experimentation and modeling reveals that absorbing light volumetrically (i.e. in the depth of the fluid) is fundamentally different from surface-based absorption. Depending on the particle material, size, shape, and volume fraction, a fluid can be changed from being mostly transparent to sunlight (in the case of water, alcohols, oils, and glycols) to being a very efficient volumetric absorber of sunlight. This research also visualizes, under high levels of irradiation, how nanofluids undergo interesting, localized phase change phenomena. For this, images were taken of bubble formation and boiling in aqueous nanofluids heated by a hot wire and by a laser. Infrared thermography was also used to quantify this phenomenon. Overall, though, this research reveals the possibility for novel solar collectors in which the working fluid directly absorbs light energy and undergoes phase change in a single step. Modeling results indicate that these improvements can increase a solar thermal receiver's efficiency by up to 10%.
ContributorsTaylor, Robert (Author) / Phelan, Patrick E (Thesis advisor) / Adrian, Ronald (Committee member) / Trimble, Steve (Committee member) / Posner, Jonathan (Committee member) / Maracas, George (Committee member) / Arizona State University (Publisher)
Created2011
149984-Thumbnail Image.png
Description
The effects of preventive interventions are found to be related to participants' responsiveness to the program, or the degree to which participants attend sessions, engage in the material, and use the program skills. The current study proposes a multi-dimensional method for measuring responsiveness to the Family Bereavement Program (FBP), a

The effects of preventive interventions are found to be related to participants' responsiveness to the program, or the degree to which participants attend sessions, engage in the material, and use the program skills. The current study proposes a multi-dimensional method for measuring responsiveness to the Family Bereavement Program (FBP), a parenting-focused program to prevent mental health problems for children who experienced the death of a parent. It examines the relations between individual-level risk-factors and responsiveness to the program, as well as the relations between responsiveness and program outcomes. The sample consists of 90 caregivers and 135 children assigned to the intervention condition of an efficacy trial of the FBP. Caregivers' responsiveness to the 12-week program was measured using a number of indicators, including attendance, completion of weekly "homework" assignments, overall program skill use, perceived helpfulness of the program and program skills, and perceived group environment. Three underlying dimensions of responsiveness were identified: Skill Use, Program Liking, and Perceived Group Environment. Positive parenting and child externalizing problems at baseline were found to predict caregiver Skill Use. Skill Use and Perceived Group Environment predicted changes in caregiver grief and reports of child behavior problems at posttest and 11-month follow-up. Caregivers with better Skill Use had better positive parenting outcomes. Skill use mediated the relation between baseline positive parenting and improvements in positive parenting at 11-month follow-up.
ContributorsSchoenfelder, Erin (Author) / Sandler, Irwin N. (Thesis advisor) / Wolchik, Sharlene (Committee member) / Millsap, Roger (Committee member) / Barrera, Manuel (Committee member) / Arizona State University (Publisher)
Created2012
150014-Thumbnail Image.png
Description
This dissertation examines the conditions that foster or hinder success of university-based community design centers (CDCs) in the United States. Little is known about the normative underpinnings of CDCs, how successful these centers have been, which factors have contributed to or impeded their success, and how they have responded to

This dissertation examines the conditions that foster or hinder success of university-based community design centers (CDCs) in the United States. Little is known about the normative underpinnings of CDCs, how successful these centers have been, which factors have contributed to or impeded their success, and how they have responded to the changes in social, political, professional and economic contexts. Adopting Giddens' theory of structuration as a research framework, this study examined CDCs via a mixed-methods sequential research design: a cross-sectional survey of CDCs on current definitions of success and metrics in use; and in-depth interviews to document the centers' histories of change or stasis, and how these changes influenced their successes. The findings of the first phase were utilized to develop a comprehensive success model for current CDCs that comprise measures related to organizational impacts, activities, and capacities. In the multiple case study analysis, four major rationales were identified: universities for public service, pragmatist learning theories, civic professionalism, and social change. These four rationales were evident in all of the studied cases at varying degrees. Using the concept of permeability, the study also exemplified how the processes of CDCs had transformative impacts in institutional, societal, and personal contexts. Multidisciplinarity has also emerged as a theme for the current organizational transformations of CDCs. The main argument that emerged from these findings is that it is not possible to identify a singular model or best practice for CDCs. The strengths and unique potentials of CDCs depend on the alternative rationales, involved agencies, and their social, political and spatial contexts. However, capitalizing on the distinctive attributes of the institutional context (i.e. the university), I consider some possibilities for university-based CDCs with an interdisciplinary structure, pushing the professional, curricular, and institutional boundaries, and striving for systemic change and social justice. In addition to contributing to the theoretical knowledge base, the findings provide useful information to various CDCs across the country, particularly today as they struggle with financial constraints while the community needs they provide are increasingly in demand. Since CDCs have a long history of community service and engagement, the findings can inform other university-community partnerships.
ContributorsTural, Elif (Author) / Ahrentzen, Sherry (Thesis advisor) / Meunier, John (Committee member) / Yabes, Ruth (Committee member) / Arizona State University (Publisher)
Created2011
149688-Thumbnail Image.png
Description
The United States has a long history of providing public parks and amenities, especially for children. Unfortunately, children today are spending less time in public parks, less time getting physical activity and more time being indoors and sedentary. While multiple factors may be responsible for this lack of activity, multiple

The United States has a long history of providing public parks and amenities, especially for children. Unfortunately, children today are spending less time in public parks, less time getting physical activity and more time being indoors and sedentary. While multiple factors may be responsible for this lack of activity, multiple researchers have found the availability of parks is a significant influence on the physical activity levels of children as well as on the occurrence of obesity related illness. Public parks are ideal locations for children to get physical activity, however they are not always equitably distributed within communities. Income and race/ethnicity especially are common variables found to impact availability of parks. Such socioeconomic variables typically have an impact on the availability of public parks within a community. Such variables may also impact the quality of the parks provided. A case study of Scottsdale, Arizona was conducted analyzing the availability of public parks within the City between the years of 1990 and 2000 and the current quality of the parks. Statistical analysis and observation were utilized to assess the amount of park space available (in acres) and the quality of the parks in comparison to selected socioeconomic variables including ethnicity, income and total percent housing type (single family or multi-family). All analysis was conducted using U.S. Census data from the years 1990 and 2000 and was at the tract level. The results of the analysis indicate that in contrast to the initial hypothesis and past research, within the City of Scottsdale, lower income neighborhoods actually have more public park space available to them than higher income neighborhoods. Between 1990 and 2000 the difference in park space between the lowest and highest income quartiles increased considerably, approximately 230% over the ten years. The quality analysis results indicate that the overall quality of parks is slightly higher in the highest income neighborhoods, which also have no parks that could be considered of poor quality. Given the atypical results of this analysis, further research is necessary to better understand the impacts of socioeconomic characteristics on park, especially regarding children.
ContributorsSamples, Samantha (Author) / Crewe, Katherine (Thesis advisor) / Booze, Randy (Committee member) / Pijawka, David (Committee member) / Arizona State University (Publisher)
Created2011
149773-Thumbnail Image.png
Description
Parenting approaches that are firm yet warm (i.e., authoritative parenting) have been found to be robustly beneficial for mainstream White Americans youths, but do not demonstrate similarly consistent effects among Chinese Americans (CA) adolescents. Evidence suggests that CA adolescents interpret and experience parenting differently than their mainstream counterparts given differences

Parenting approaches that are firm yet warm (i.e., authoritative parenting) have been found to be robustly beneficial for mainstream White Americans youths, but do not demonstrate similarly consistent effects among Chinese Americans (CA) adolescents. Evidence suggests that CA adolescents interpret and experience parenting differently than their mainstream counterparts given differences in parenting values and child-rearing norms between traditional Chinese and mainstream American cultures. The current study tests the theory that prospective effects of parenting on psychological and academic functioning depends on adolescents' cultural frameworks for interpreting and understanding parenting. CA adolescents with values and expectations of parenting that are more consistent with mainstream American parenting norms were predicted to experience parenting similar to their White American counterparts (i.e., benefiting from a combination of parental strictness and warmth). In contrast, CA adolescents with parenting values and expectations more consistent with traditional Chinese parenting norms were predicted to experience parenting and its effects on academic and psychological outcomes differently than patterns documented in the mainstream literature. This study was conducted with a sample of Chinese American 9th graders (N = 500) from the Multicultural Family Adolescent Study. Latent Class Analysis (LCA), a person-centered approach to modeling CA adolescents' cultural frameworks for interpreting parenting, was employed using a combination of demographic variables (e.g., nativity, language use at home, mother's length of stay in the U.S.) and measures of parenting values and expectations (e.g., parental respect, ideal strictness & laxness). The study then examined whether prospective effects of parenting behaviors (strict control, warmth, and their interaction effect) on adolescent adjustment (internalizing and externalizing symptoms, substance use, and GPA) were moderated by latent class membership. The optimal LCA solution identified five distinct cultural frameworks for understanding parenting. Findings generally supported the idea that effects of parenting on CA adolescent adjustment depend on adolescents' cultural framework for parenting. The classic authoritative parenting effect (high strictness and warmth leads to positive outcomes) was found for the two most acculturated groups of adolescents. However, only one of these groups overtly endorsed mainstream American parenting values.
ContributorsLiu, Freda Fangfang (Author) / Gonzales, Nancy A. (Thesis advisor) / Tein, Jenn-Yun (Committee member) / Yoo, Hyung Chol (Committee member) / Barrera, Manuel (Committee member) / Arizona State University (Publisher)
Created2011
150409-Thumbnail Image.png
Description
The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all

The electrode-electrolyte interface in electrochemical environments involves the understanding of complex processes relevant for all electrochemical applications. Some of these processes include electronic structure, charge storage, charge transfer, solvent dynamics and structure and surface adsorption. In order to engineer electrochemical systems, no matter the function, requires fundamental intuition of all the processes at the interface. The following work presents different systems in which the electrode-electrolyte interface is highly important. The first is a charge storage electrode utilizing percolation theory to develop an electrode architecture producing high capacities. This is followed by Zn deposition in an ionic liquid in which the deposition morphology is highly dependant on the charge transfer and surface adsorption at the interface. Electrode Architecture: A three-dimensional manganese oxide supercapacitor electrode architecture is synthesized by leveraging percolation theory to develop a hierarchically designed tri-continuous percolated network. The three percolated phases include a faradaically-active material, electrically conductive material and pore-former templated void space. The micropores create pathways for ionic conductivity, while the nanoscale electrically conducting phase provides both bulk conductivity and local electron transfer with the electrochemically active phase. Zn Electrodeposition: Zn redox in air and water stable N-ethyl-N-methylmorpholinium bis(trifluoromethanesulfonyl)imide, [C2nmm][NTf2] is presented. Under various conditions, characterization of overpotential, kinetics and diffusion of Zn species and morphological evolution as a function of overpotential and Zn concentration are analyzed. The surface stress evolution during Zn deposition is examined where grain size and texturing play significant rolls in compressive stress generation. Morphological repeatability in the ILs led to a novel study of purity in ionic liquids where it is found that surface adsorption of residual amine and chloride from the organic synthesis affect growth characteristics. The drivers of this work are to understand the processes occurring at the electrode-electrolyte interface and with that knowledge, engineer systems yielding optimal performance. With this in mind, the design of a bulk supercapacitor electrode architecture with excellent composite specific capacitances, as well as develop conditions producing ideal Zn deposition morphologies was completed.
ContributorsEngstrom, Erika (Author) / Friesen, Cody (Thesis advisor) / Buttry, Daniel (Committee member) / Sieradzki, Karl (Committee member) / Arizona State University (Publisher)
Created2011