This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155841-Thumbnail Image.png
Description
A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual

A major challenge in health-related policy and program evaluation research is attributing underlying causal relationships where complicated processes may exist in natural or quasi-experimental settings. Spatial interaction and heterogeneity between units at individual or group levels can violate both components of the Stable-Unit-Treatment-Value-Assumption (SUTVA) that are core to the counterfactual framework, making treatment effects difficult to assess. New approaches are needed in health studies to develop spatially dynamic causal modeling methods to both derive insights from data that are sensitive to spatial differences and dependencies, and also be able to rely on a more robust, dynamic technical infrastructure needed for decision-making. To address this gap with a focus on causal applications theoretically, methodologically and technologically, I (1) develop a theoretical spatial framework (within single-level panel econometric methodology) that extends existing theories and methods of causal inference, which tend to ignore spatial dynamics; (2) demonstrate how this spatial framework can be applied in empirical research; and (3) implement a new spatial infrastructure framework that integrates and manages the required data for health systems evaluation.

The new spatially explicit counterfactual framework considers how spatial effects impact treatment choice, treatment variation, and treatment effects. To illustrate this new methodological framework, I first replicate a classic quasi-experimental study that evaluates the effect of drinking age policy on mortality in the United States from 1970 to 1984, and further extend it with a spatial perspective. In another example, I evaluate food access dynamics in Chicago from 2007 to 2014 by implementing advanced spatial analytics that better account for the complex patterns of food access, and quasi-experimental research design to distill the impact of the Great Recession on the foodscape. Inference interpretation is sensitive to both research design framing and underlying processes that drive geographically distributed relationships. Finally, I advance a new Spatial Data Science Infrastructure to integrate and manage data in dynamic, open environments for public health systems research and decision- making. I demonstrate an infrastructure prototype in a final case study, developed in collaboration with health department officials and community organizations.
ContributorsKolak, Marynia Aniela (Author) / Anselin, Luc (Thesis advisor) / Rey, Sergio (Committee member) / Koschinsky, Julia (Committee member) / Maciejewski, Ross (Committee member) / Arizona State University (Publisher)
Created2017
165078-Thumbnail Image.png
Description

Significant health inequalities exist between different castes and ethnic communities in India, and identifying the roots of these inequalities is of interest to public health research and policy. Research on caste-based health inequalities in India has historically focused on general, government-defined categories, such as “Scheduled Castes,” “Scheduled Tribes,” and “Other

Significant health inequalities exist between different castes and ethnic communities in India, and identifying the roots of these inequalities is of interest to public health research and policy. Research on caste-based health inequalities in India has historically focused on general, government-defined categories, such as “Scheduled Castes,” “Scheduled Tribes,” and “Other Backward Classes.” This method obscures the diversity of experiences, indicators of well-being, and health outcomes between castes, tribes, and other communities in the “scheduled” category. This study analyzes data on 699,686 women from 4,260 castes, tribes and communities in the 2015-2016 Demographic and Health Survey of India to: (1) examine the diversity within and overlap between general, government-defined community categories in both wealth, infant mortality, and education, and (2) analyze how infant mortality is related to community category membership and socioeconomic status (measured using highest level of education and household wealth). While there are significant differences between general, government-defined community categories (e.g., scheduled caste, backward class) in both wealth and infant mortality, the vast majority of variation between communities occurs within these categories. Moreover, when other socioeconomic factors like wealth and education are taken into account, the difference between general, government-defined categories reduces or disappears. These findings suggest that focusing on measures of education and wealth at the household level, rather than general caste categories, may more accurately target those individuals and households most at risk for poor health outcomes. Further research is needed to explain the mechanisms by which discrimination affects health in these populations, and to identify sources of resilience, which may inform more effective policies.

ContributorsClauss, Colleen (Author) / Hruschka, Daniel (Thesis director) / Davis, Mary (Committee member) / Barrett, The Honors College (Contributor) / School of Human Evolution & Social Change (Contributor) / Department of Psychology (Contributor)
Created2022-05