This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

171671-Thumbnail Image.png
Description
Heat acclimatization can be induced by targeting a core temperature 38.5°C for at least 60 minutes per day lasting 5 to 21 days, complementary to normal exercise activity. However, consistently meeting this threshold on consecutive days may be difficult for athletes. The objective of this study was to evaluate the

Heat acclimatization can be induced by targeting a core temperature 38.5°C for at least 60 minutes per day lasting 5 to 21 days, complementary to normal exercise activity. However, consistently meeting this threshold on consecutive days may be difficult for athletes. The objective of this study was to evaluate the efficacy of four single-bout heating protocols to reach a core temperature 38.5°C. The study was set up as a non-randomized field study, factoring in the September-October outdoor desert conditions, Tempe, AZ, USA. Environmental conditions were measured using a Kestrel heat stress tracker. Protocols were constituted out of 3 elements: PAS – passive heat exposure in a tent (54±1°C), EH - exercise in hot condition with high intensity interval training (HIIT) outdoors in the heat in a tent with a ventilator (43±1°C), EM – exercise in moderate conditions with HIIT indoors (22±0.4°C). All participants performed protocols in the following order: 1) PAS 60-min; 2) EH-PAS (EH 30-min + PAS 30-min); 3) EH 60-min, and 4) EM 60-min. A cycle ergometer was used for HIIT (2-min warm-up followed by 7x2-min sprints with 2-min relative rest between sprints during the first 30 min and stationary cycling for the second 30 min), with a self-selected workload at 80-100 rpm and similar heart rate (HR) response during exercise testing for EH: 146±10, EM: 142±13, and EH-PAS: 142±13 (P>0.05). A total of 10 active male students (25±3 years old) reported no difference between protocols for baseline Tc (P=0.37) and HR (P=0.28). During the first 30-min, Tc was significantly different between protocols (average ranging from 37.3-37.6°C, P=0.01), but from a practical perspective, differences were limited. During the second 30-min session, the Tc for EH (38.5±0.4°C) and EH-PAS (38.6±0.4°C) were significantly higher from EM (38.1±0.4°C) and PAS alone (37.8±0.4°C), P<0.001. The average HR (bpm) was significantly lower in PAS (110±17) and EH (136±13) during the second half of the protocols compared to the EH (151±10) and EM (149±16), P<0.001. In conclusion, exercise alone vs. a combination of exercise and passive heating in hot conditions resulted both in a body temperature 38.5°C, but the combination was more efficient since participants exercised for only 30-minutes.
ContributorsNavarro, Sonia (Author) / Wardenaar, Floris (Thesis advisor) / Kavouras, Stavros (Committee member) / Vanos, Jennifer (Committee member) / Arizona State University (Publisher)
Created2022
171747-Thumbnail Image.png
Description
The human body has temperature-regulating mechanisms working to maintain body core temperature around 37°C. This ensures optimal bodily function. Disruption to core temperature however, initiates a cascade of events to return to baseline. The objective of this study is to evaluate the efficacy of cooling strategies to induce the fastest

The human body has temperature-regulating mechanisms working to maintain body core temperature around 37°C. This ensures optimal bodily function. Disruption to core temperature however, initiates a cascade of events to return to baseline. The objective of this study is to evaluate the efficacy of cooling strategies to induce the fastest reductions in core temperature. The study was set up as a randomized field study. Core temperature was measured using an E-Celsius core temperature capsule. Environmental conditions were measured using a Kestrel heat stress tracker. Following completion of a heat-stress protocol, participants underwent one of the four randomized cooling protocols. These cooling protocols consisted of: 1) wearing an ice vest (18°C), 2) applying an icy towel directly to the back of the neck (24°C) in combination with hand/forearm water immersion (15°C), 3) a combination of ice vest, icy towel and hand/forearm water immersion, or 4) sitting in a thermoneutral room (20°C). In all cooling interventions, participants consumed 16oz of an ice slurry (0°C) within 10 minutes of the initiation of the protocol. The control group consumed only room temperature water- ad libitum. A total of 10 active males (25 ± 3 years old) reported no difference between baseline body core temperatures after each heating intervention (P=0.23). Average core temperature and heart rate differed, though not statistically significant between treatments (P>0.05). No significant differences were noted between cooling rates (P=0.51). Skin temperature (Tsk) average and decrement was found to be statistically significant (P<0.001).
ContributorsCaballero, Rachel (Author) / Wardenaar, Floris (Thesis advisor) / Kavouras, Stavros (Committee member) / Vanos, Jennifer (Committee member) / Arizona State University (Publisher)
Created2022
161317-Thumbnail Image.png
Description
Annually, more than 200 hikers are rescued in the greater Phoenix area. This study examined behavior influencing acute hydration status in hot (HOT) and moderate (MOD) climates, by examining fluid planning and decision making in combination with an educational video. A total of n=115 hikers completed self-paced hikes, n=56 hikers

Annually, more than 200 hikers are rescued in the greater Phoenix area. This study examined behavior influencing acute hydration status in hot (HOT) and moderate (MOD) climates, by examining fluid planning and decision making in combination with an educational video. A total of n=115 hikers completed self-paced hikes, n=56 hikers completed the hike in a HOT condition (wet bulb globe temperature [WBGT]=24.84°C) and n=59 hikers completed the hike in a MOD condition (WBGT=8.28°C). Real food and fluid behavior allowed participants to freely select the amount of food and fluid brought on the hike and intake was ad libitum. The following heat stress indicators were all significantly higher in the HOT condition compared to MOD condition (HOT median, MOD median; p-value): hike duration (1.48, 1.20; p<0.01), energy expenditure (561, 408, p<0.01), sweat rate (776, 465, p<0.01), and session rating of perceived exertion (RPE) scores (1177, 732, p<0.01). After watching a 3-minute hydration education video, and the opportunity to stock up on extra fluid, 54% of participants carried sufficient fluid in the HOT condition to meet their needs compared to 81% of participants in the MOD condition. However, only 23% of participants in the HOT condition consumed sufficient fluid to make up for fluid lost through sweating compared to 33% in the MOD condition. More than half of participants in the HOT condition (59%) and the MOD condition (76%) did not stock up on extra fluid after education. These results demonstrate that hikers did not consume sufficient fluids to meet their needs while hiking, especially in a hot climate. They also show heat stress negatively affected hikers’ performance measures. More research is required to assess the feasibility and efficacy of hydration related education videos at trailheads.
ContributorsNaldo, Rebecca (Author) / Wardenaar, Floris (Thesis advisor) / Vanos, Jennifer (Committee member) / Kavouras, Stavros (Committee member) / Arizona State University (Publisher)
Created2021