This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

158549-Thumbnail Image.png
Description
Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter),

Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter), which have been found to pollute virtually every marine and terrestrial ecosystem on the planet. This thesis explored the transfer of plastic pollutants from consumer products into the built water environment and ultimately into global aquatic and terrestrial ecosystems.

A literature review demonstrated that municipal sewage sludge produced by wastewater treatment plants around the world contains detectable quantities of microplastics. Application of sewage sludge on land was shown to represent a mechanism for transfer of microplastics from wastewater into terrestrial environments, with some countries reporting as high as 113 ± 57 microplastic particles per gram of dry sludge.

To address the notable shortcoming of inconsistent reporting practices for microplastic pollution, this thesis introduced a novel, online calculator that converts the number of plastic particles into the unambiguous metric of mass, thereby making global studies on microplastic pollution directly comparable.

This thesis concludes with an investigation of a previously unexplored and more personal source of plastic pollution, namely the disposal of single-use contact lenses and an assessment of the magnitude of this emerging source of environmental pollution. Using an online survey aimed at quantifying trends with the disposal of lenses in the US, it was discovered that 20 ± 0.8% of contact lens wearers flushed their used lenses down the drain, amounting to 44,000 ± 1,700 kg y-1 of lens dry mass discharged into US wastewater.

From the results it is concluded that conventional and medical microplastics represent a significant global source of pollution and a long-term threat to ecosystems around the world. Recommendations are provided on how to limit the entry of medical microplastics into the built water environment to limit damage to ecosystems worldwide.
ContributorsRolsky, Charles (Author) / Halden, Rolf (Thesis advisor) / Green, Matthew (Committee member) / Neuer, Susanne (Committee member) / Polidoro, Beth (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2020
161322-Thumbnail Image.png
Description
Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species have resulted in health advisory and regulatory initiatives for PFAS

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic chemicals used for a wide variety of products and industrial processes, including being an essential class of chemicals in the fabrication of semiconductors. Proven concerns related to bioaccumulation and toxicity across multiple species have resulted in health advisory and regulatory initiatives for PFAS in drinking and wastewaters. Among impacted users of PFAS, the semiconductor industry is in urgent need of technologies to remove PFAS from water. Specifically, they prefer technologies capable of mineralizing PFAS into inorganic fluoride (F-). The goal of this thesis is to compare the effectiveness of photo- versus electrocatalytic treatment in benchtop reactor systems PFAS in industrial wastewater before selecting one technology to investigate comprehensively. First, a model wastewater was developed based upon semiconductor samples to represent water matrices near where PFAS are used and the aggregate Fab effluent, which were then used in batch catalytic experiments. Second, batch experiments with homogenous photocatalysis (UV/SO32-) were found to be more energy-intensive than heterogeneous catalysis using boron-doped diamond (BDD) electrodes, and the latter approach was then studied in-depth. During electrocatalysis, longer chain PFAS (C8; PFOA & PFOS) were observed to degrade faster than C6 and C4 PFAS. This study is the first to report near-complete defluorination of not only C8- and C6- PFAS, but also C4-PFAS, in model wastewaters using BDD electrocatalysis, and the first to report such degradation in real Fab wastewater effluents. Based upon differences in PFAS degradation rates observed in single-solute systems containing only C4 PFAS versus multi-solute systems including C4, C6, and C8 PFAS, it was concluded that the surfactant properties of the longer-chain PFAS created surface films on the BDD electrode surface which synergistically enhanced removal of shorter-chain PFAS. The results from batch experiments that serve as the basis of this thesis will be used to assess the chemical byproducts and their associated bioaccumulation and toxicity. This thesis was aimed at developing an efficient method for the degradation of perfluoroalkyl substances from industrial process waters at realistic concentrations.
ContributorsNienhauser, Alec Brockway (Author) / Westerhoff, Paul (Thesis advisor) / Garcia-Segura, Sergi (Committee member) / Thomas, Marylaura (Committee member) / Green, Matthew (Committee member) / Arizona State University (Publisher)
Created2021
193447-Thumbnail Image.png
Description
As society moves to reduce the effects of climate change, there is a growing needfor the use of polymer science in technologies to mitigate the emission of carbon dioxide. Networks containing quaternary ammonium groups with corresponding HCO3 ions providing the mobile counter-charge in the networks have been reported to capture carbon dioxide directly

As society moves to reduce the effects of climate change, there is a growing needfor the use of polymer science in technologies to mitigate the emission of carbon dioxide. Networks containing quaternary ammonium groups with corresponding HCO3 ions providing the mobile counter-charge in the networks have been reported to capture carbon dioxide directly from the atmosphere through a moisture swing mechanism, among other mechanisms. In this work, microstructural analysis of synthesized polystyrene-based anion exchange networks is conducted using known characterization techniques to better understand if variations in sorbent microstructure adjust the distances between the quaternary ammonium groups. Additional surface morphology studies of these sorbents are conducted. X-Ray Diffraction (XRD) spectra reveal the amorphous structure of these polymers and the ability to adjust the distance between quaternary ammonium groups by introducing different spacer groups and various anions into the networks, which may affect the spontaneity of the CO2 to chemisorb to these sorbents. However, Wide Angle X-Ray Scattering (WAXS) conflicts with the XRD data, indicating a change in distance between these groups is not achieved. Additionally, WAXS data indicates an ability to increase the homogeneity of structure in these materials by introducing larger counterions into the networks. Small Angle X-Ray Scattering (SAXS) reveals no obvious large morphological features in these sorbents, which is supported by Scanning Electron Microscopy (SEM) images. In conclusion, XRD and WAXS experiments exhibit conflicting data regarding the ability to adjust the distances between the quaternary ammonium groups in these networks. Proposed actions to resolve this conflict are presented. Finally, SEM sheds light on particle size and morphological features of these materials.
ContributorsBenard, Emmie Marie (Author) / Green, Matthew (Thesis advisor) / Jin, Kailong (Committee member) / Yang, Sui (Committee member) / Arizona State University (Publisher)
Created2024