This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150784-Thumbnail Image.png
Description
In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor

In this work, the vapor transport and aerobic bio-attenuation of compounds from a multi-component petroleum vapor mixture were studied for six idealized lithologies in 1.8-m tall laboratory soil columns. Columns representing different geological settings were prepared using 20-40 mesh sand (medium-grained) and 16-minus mesh crushed granite (fine-grained). The contaminant vapor source was a liquid composed of twelve petroleum hydrocarbons common in weathered gasoline. It was placed in a chamber at the bottom of each column and the vapors diffused upward through the soil to the top where they were swept away with humidified gas. The experiment was conducted in three phases: i) nitrogen sweep gas; ii) air sweep gas; iii) vapor source concentrations decreased by ten times from the original concentrations and under air sweep gas. Oxygen, carbon dioxide and hydrocarbon concentrations were monitored over time. The data allowed determination of times to reach steady conditions, effluent mass emissions and concentration profiles. Times to reach near-steady conditions were consistent with theory and chemical-specific properties. First-order degradation rates were highest for straight-chain alkanes and aromatic hydrocarbons. Normalized effluent mass emissions were lower for lower source concentration and aerobic conditions. At the end of the study, soil core samples were taken every 6 in. Soil moisture content analyses showed that water had redistributed in the soil during the experiment. The soil at the bottom of the columns generally had higher moisture contents than initial values, and soil at the top had lower moisture contents. Profiles of the number of colony forming units of hydrocarbon-utilizing bacteria/g-soil indicated that the highest concentrations of degraders were located at the vertical intervals where maximum degradation activity was suggested by CO2 profiles. Finally, the near-steady conditions of each phase of the study were simulated using a three-dimensional transient numerical model. The model was fit to the Phase I data by adjusting soil properties, and then fit to Phase III data to obtain compound-specific first-order biodegradation rate constants ranging from 0.0 to 5.7x103 d-1.
ContributorsEscobar Melendez, Elsy (Author) / Johnson, Paul C. (Thesis advisor) / Andino, Jean (Committee member) / Forzani, Erica (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2012
158011-Thumbnail Image.png
Description
Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the dominant source of some local air pollution problems. In general,

Mobile sources emit a number of different gases including nitrogen oxides (NOx) and volatile organic compounds (VOCs) as well as particulate matter (PM10, PM2.5). As a result, mobile sources are major contributors to urban air pollution and can be the dominant source of some local air pollution problems. In general, mobile sources are divided into two categories: on-road mobile sources and non-road mobile sources. In Maricopa County, the Maricopa County Air Quality Department prepares inventories of all local sources [11], [12]. These inventories report that for Maricopa County, on-road mobile sources emit about 23% of total PM2.5 annually, 58% of the total NOx, and 8% of the total VOCs. To understand how future changes how vehicles might impact local air quality, this work focuses on comparing current inventories of PM2.5, black carbon (BC), NOx, and VOCs to what may be expected emissions in future years based on different scenarios of penetration of hybrid gas-electric vehicles (HEV) and electric vehicles (EV) as well as continued reduction in emissions from conventional internal combustion (IC) vehicles. A range of scenarios has been developed as part of this thesis based on literature reports [6], [8], air quality improvement plan documentation [5], projected vehicle sales and registration [3], [4], as well as using EPA’s Motor Vehicle Emission Simulator (MOVES) [9]. Thus, these created scenarios can be used to evaluate what factors will make the most significant difference in improving local air quality through reduced emissions of PM2.5, BC, NOx and VOCs in the future. Specifically, the impact of a greater fraction of cleaner alternative vehicles such as hybrid-electric and electric vehicles will be compared to the impact of continual reductions in emissions from traditional internal combustion vehicles to reducing urban air pollution emissions in Maricopa County.
ContributorsAlboaijan, Fahad A M S (Author) / Fraser, Matthew (Thesis advisor) / Andino, Jean (Committee member) / Lackner, Klaus (Committee member) / Arizona State University (Publisher)
Created2020