This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150305-Thumbnail Image.png
Description
Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from

Lipids and free fatty acids (FFA) from cyanobacterium Synechocystis can be used for biofuel (e.g. biodiesel or renewable diesel) production. In order to utilize and scale up this technique, downstream processes including culturing and harvest, cell disruption, and extraction were studied. Several solvents/solvent systems were screened for lipid extraction from Synechocystis. Chloroform + methanol-based Folch and Bligh & Dyer methods were proved to be "gold standard" for small-scale analysis due to their highest lipid recoveries that were confirmed by their penetration of the cell membranes, higher polarity, and stronger interaction with hydrogen bonds. Less toxic solvents, such as methanol and MTBE, or direct transesterification of biomass (without pre-extraction step) gave only slightly lower lipid-extraction yields and can be considered for large-scale application. Sustained exposure to high and low temperature extremes severely lowered the biomass and lipid productivity. Temperature stress also triggered changes of lipid quality such as the degree of unsaturation; thus, it affected the productivities and quality of Synechocystis-derived biofuel. Pulsed electric field (PEF) was evaluated for cell disruption prior to lipid extraction. A treatment intensity > 35 kWh/m3 caused significant damage to the plasma membrane, cell wall, and thylakoid membrane, and it even led to complete disruption of some cells into fragments. Treatment by PEF enhanced the potential for the low-toxicity solvent isopropanol to access lipid molecules during subsequent solvent extraction, leading to lower usage of isopropanol for the same extraction efficiency. Other cell-disruption methods also were tested. Distinct disruption effects to the cell envelope, plasma membrane, and thylakoid membranes were observed that were related to extraction efficiency. Microwave and ultrasound had significant enhancement of lipid extraction. Autoclaving, ultrasound, and French press caused significant release of lipid into the medium, which may increase solvent usage and make medium recycling difficult. Production of excreted FFA by mutant Synechocystis has the potential of reducing the complexity of downstream processing. Major problems, such as FFA precipitation and biodegradation by scavengers, account for FFA loss in operation. Even a low concentration of FFA scavengers could consume FFA at a high rate that outpaced FFA production rate. Potential strategies to overcome FFA loss include high pH, adsorptive resin, and sterilization techniques.
ContributorsSheng, Chieh (Author) / Rittmann, Bruce E. (Thesis advisor) / Westerhoff, Paul (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2011
155164-Thumbnail Image.png
Description
ABSTRACT

Sustainable global energy production is one of the grand challenges of the 21st century. Next-generation renewable energy sources include using photosynthetic microbes such as cyanobacteria for efficient production of sustainable fuels from sunlight. The cyanobacterium Synechocystis PCC 6803 (Synechocystis) is a genetically tractable model organism for plant-like photosynthesis that is

ABSTRACT

Sustainable global energy production is one of the grand challenges of the 21st century. Next-generation renewable energy sources include using photosynthetic microbes such as cyanobacteria for efficient production of sustainable fuels from sunlight. The cyanobacterium Synechocystis PCC 6803 (Synechocystis) is a genetically tractable model organism for plant-like photosynthesis that is used to develop microbial biofuel technologies. However, outside of photosynthetic processes, relatively little is known about the biology of microbial phototrophs such as Synechocystis, which impairs their development into market-ready technologies. My research objective was to characterize strategic aspects of Synechocystis biology related to its use in biofuel production; specifically, how the cell surface modulates the interactions between Synechocystis cells and the environment. First, I documented extensive biofouling, or unwanted biofilm formation, in a 4,000-liter roof-top photobioreactor (PBR) used to cultivate Synechocystis, and correlated this cell-binding phenotype with changes in nutrient status by developing a bench-scale assay for axenic phototrophic biofilm formation. Second, I created a library of mutants that lack cell surface structures, and used this biofilm assay to show that mutants lacking the structures pili or S-layer have a non-biofouling phenotype. Third, I analyzed the transcriptomes of cultures showing aggregation, another cell-binding phenotype, and demonstrated that the cells were undergoing stringent response, a type of conserved stress response. Finally, I used contaminant Consortia and statistical modeling to test whether Synechocystis mutants lacking cell surface structures could reduce contaminant growth in mixed cultures. In summary, I have identified genetic and environmental means of manipulating Synechocystis strains for customized adhesion phenotypes, for more economical biomass harvesting and non-biofouling methods. Additionally, I developed a modified biofilm assay and demonstrated its utility in closing a key gap in the field of microbiology related to axenic phototrophic biofilm formation assays. Also, I demonstrated that statistical modeling of contaminant Consortia predicts contaminant growth across diverse species. Collectively, these findings serve as the basis for immediately lowering the cost barrier of Synechocystis biofuels via a more economical biomass-dewatering step, and provide new research tools for improving Synechocystis strains and culture ecology management for improved biofuel production.
ContributorsAllen, Rebecca Custer (Author) / Curtiss Iii, Roy (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Rittmann, Bruce E. (Committee member) / Vermaas, Willem (Committee member) / Arizona State University (Publisher)
Created2016