This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 9 of 9
Filtering by

Clear all filters

152585-Thumbnail Image.png
Description
Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I

Uranium (U) contamination has been attracting public concern, and many researchers are investigating principles and applications of U remediation. The overall goal of my research is to understand the versatile roles of sulfate-reducing bacteria (SRB) in uranium bioremediation, including direct involvement (reducing U) and indirect involvement (protecting U reoxidation). I pursue this goal by studying Desulfovibro vuglaris, a representative SRB. For direct involvement, I performed experiments on uranium bioreduction and uraninite (UO2) production in batch tests and in a H2-based membrane biofilm reactor (MBfR) inoculated with D. vuglaris. In summary, D. vuglaris was able to immobilize soluble U(VI) by enzymatically reducing it to insoluble U(IV), and the nanocrystallinte UO2 was associated with the biomass. In the MBfR system, although D. vuglaris failed to form a biofilm, other microbial groups capable of U(VI) reduction formed a biofilm, and up to 95% U removal was achieved during a long-term operation. For the indirect involvement, I studied the production and characterization of and biogenic iron sulfide (FeS) in batch tests. In summary, D. vuglaris produced nanocrystalline FeS, a potential redox buffer to protect UO2 from remobilization by O2. My results demonstrate that a variety of controllable environmental parameters, including pH, free sulfide, and types of Fe sources and electron donors, significantly determined the characteristics of both biogenic solids, and those characteristics should affect U-sequestrating performance by SRB. Overall, my results provide a baseline for exploiting effective and sustainable approaches to U bioremediation, including the application of the novel MBfR technology to U sequestration from groundwater and biogenic FeS for protecting remobilization of sequestrated U, as well as the microbe-relevant tools to optimize U sequestration applicable in reality.
ContributorsZhou, Chen (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2014
156559-Thumbnail Image.png
Description
This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through

This research explores microbial chain elongation as a pathway for production of complex organic compounds in soils with implication for the carbon cycle. In chain elongation, simple substrates such as ethanol and short chain carboxylates such as acetate can be converted to longer carbon chain carboxylates under anaerobic conditions through cyclic, reverse β oxidation. This pathway elongates the carboxylate by two carbons. The chain elongation process is overall thermodynamically feasible, and microorganisms gain energy through this process. There have been limited insights into the versatility of chain elongating substrates, understanding the chain elongating microbial community, and its importance in sequestering carbon in the soils.

We used ethanol, methanol, butanol, and hydrogen as electron donors and acetate and propionate as electron acceptors to test the occurrence of microbial chain elongation in four soils with different physicochemical properties and microbial communities. Common chain elongation products were the even numbered chains butyrate, caproate, and butanol, the odd numbered carboxylates valerate and heptanoate, along with molecular hydrogen. At a near neutral pH and mesophilic temperature, we observed a stable and sustained production of longer fatty acids along with hydrogen. Microbial community analysis show phylotypes from families such as Clostridiaceae, Bacillaceae, and Ruminococcaceae in all tested conditions. Through chain elongation, the products formed are less biodegradable. They may undergo transformations and end up as organic carbon, decreasing the greenhouse gas emissions, thus, making this process important to study.
ContributorsJoshi, Sayalee (Author) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2018
156940-Thumbnail Image.png
Description
Microbial electrochemical cells (MxCs) are a novel technology that use anode-respiring bacteria (ARB) to bioremediate wastewaters and respire an electrical current, which can then be used directly to produce value-added products like hydrogen peroxide (H2O2). Ninety-five percent of the world’s H2O2 is currently produced using the anthraquinone process,

Microbial electrochemical cells (MxCs) are a novel technology that use anode-respiring bacteria (ARB) to bioremediate wastewaters and respire an electrical current, which can then be used directly to produce value-added products like hydrogen peroxide (H2O2). Ninety-five percent of the world’s H2O2 is currently produced using the anthraquinone process, whose production requires expensive and potentially carcinogenic catalysts and high amounts of electricity. However, the amount of H2O2 that can be produced from these microbial peroxide-producing cells (MPPCs) has not been thoroughly investigated. Predicting potential H2O2 production in MxCs is further complicated by a lack of mathematical models to predict performance utilizing complex waste streams like primary sludge (PS).

A reactor design methodology was developed for MPPCs to systematically optimize H2O2 production with minimal energy consumption. H2O2 stability was evaluated with different catholytes, membranes, and catalysts materials, and the findings used to design and operate long-term a dual-chamber, flat-plate MPPC using different catholytes, ferrochelating stabilizers, and hydraulic retention times (HRT). Up to 3.1 ± 0.37 g H2O2 L-1 was produced at a 4-h HRT in an MPPC with as little as 1.13 W-h g-1 H2O2 power input using NaCl catholytes. Attempts to improve H2O2 production by using weak acid buffers as catholytes or ferrochelating stabilizers failed for different reasons.

A non-steady-state mathematical model, MYAnode, was developed combinging existing wastewater treatment, anode biofilm, and chemical speciation models to predict MxC performance utilizing complex substrates. The model simulated the large-scale trends observed when operating an MPPC with PS substrate. At HRTs ≥ 12-d, the model demonstrated up to 20% Coulombic recovery. At these conditions, ARB required additional alkalinity production by ≥ 100 mgVSS/L of acetoclastic methanogens to prevent pH inhibition when little influent alkalinity is available. At lower HRTs, methanogens are unable to produce the alkalinity required to prevent ARB inhibition due to washout and rapid acidification of the system during fermentation. At ≥ 100 mgVSS/L of methanogens, increasing the diffusion layer thickness from 500 to 1000 μm improved Coulombic efficiency by 13.9%, while increasing particulate COD hydrolysis rates to 0.25/d only improved Coulombic efficiency by 3.9%.
ContributorsYoung, Michelle Nichole (Author) / Rittmann, Bruce E. (Thesis advisor) / Torres, César I (Committee member) / Marcus, Andrew K (Committee member) / Arizona State University (Publisher)
Created2018
155284-Thumbnail Image.png
Description
One solution to mitigating global climate change is using cyanobacteria or single-celled algae (collectively microalgae) to replace petroleum-based fuels and products, thereby reducing the net release of carbon dioxide. This work develops and evaluates a mechanistic kinetic model for light-dependent microalgal growth. Light interacts with microalgae in a

One solution to mitigating global climate change is using cyanobacteria or single-celled algae (collectively microalgae) to replace petroleum-based fuels and products, thereby reducing the net release of carbon dioxide. This work develops and evaluates a mechanistic kinetic model for light-dependent microalgal growth. Light interacts with microalgae in a variety of positive and negative ways that are captured by the model: light intensity (LI) attenuates through a microalgal culture, light absorption provides the energy and electron flows that drive photosynthesis, microalgae pool absorbed light energy, microalgae acclimate to different LI conditions, too-high LI causes damage to the cells’ photosystems, and sharp increases in light cause severe photoinhibition that inhibits growth. The model accounts for all these phenomena by using a set of state variables that represent the pooled light energy, photoacclimation, PSII photo-damage, PSII repair inhibition and PSI photodamage. Sets of experiments were conducted with the cyanobacterium Synechocystis sp. PCC 6803 during step-changes in light intensity and flashing light. The model was able to represent and explain all phenomena observed in the experiments. This included the spike and depression in growth rate following an increasing light step, the temporary depression in growth rate following a decreasing light step, the shape of the steady-state growth-irradiance curve, and the “blending” of light and dark periods under rapid flashes of light. The LI model is a marked improvement over previous light-dependent growth models, and can be used to design and interpret future experiments and practical systems for generating renewable feedstock to replace petroleum.
ContributorsStraka, Levi (Author) / Rittmann, Bruce E. (Thesis advisor) / Fox, Peter (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2017
171577-Thumbnail Image.png
Description
Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the

Trichloroethene (TCE) and hexavalent chromium (Cr (VI)) are ubiquitous subsurface contaminants affecting the water quality and threatening human health. Microorganisms capable of TCE and Cr (VI) reductions can be explored for bioremediation at contaminated sites. The goal of my dissertation research was to address challenges that decrease the efficiency of bioremediation in the subsurface. Specifically, I investigated strategies to (i) promote improve microbial reductive dechlorination extent through the addition of Fe0 and (ii) Cr (VI) bio-reduction through enrichment of specialized microbial consortia. Fe0 can enhance microbial TCE reduction by inducing anoxic conditions and generating H2 (electron donor). I first evaluated the effect of Fe0 on microbial reduction of TCE (with ClO4– as co-contaminant) using semi-batch soil microcosms. Results showed that high concentration of Fe0 expected during in situ remediation inhibited microbial TCE and ClO4– reduction when added together with Dehalococcoides mccartyi-containing cultures. A low concentration of aged Fe0 enhanced microbial TCE dechlorination to ethene and supported complete microbial ClO4– reduction. I then evaluated a decoupled Fe0 and biostimulation/bioaugmentation treatment approach using soil packed columns with continuous flow of groundwater. I demonstrated that microbial TCE reductive dechlorination to ethene can be benefitted by Fe0 abiotic reactions, when biostimulation and bioaugmentation are performed downstream of Fe0 addition. Furthermore, I showed that ethene production can be sustained in the presence of aerobic groundwater (after Fe0 exhaustion) by the addition of organic substrates. I hypothesized that some lessons learned from TCE Bioremediation can be applied also for other pollutants that can benefit from anaerobic reductions, like Cr (VI). Bioremediation of Cr (VI) has historically relied on biostimulation of native microbial communities, partially due to the lack of knowledge of the benefits of adding enriched consortia of specialized microorganisms (bioaugmentation). To determine the merits of a specialized consortium on bio-reduction of Cr (VI), I first enriched a culture on lactate and Cr (VI). The culture had high abundance of putative Morganella species and showed rapid and sustained Cr (VI) bio-reduction compared to a subculture grown with lactate only (without Morganella). Overall, this dissertation work documents possible strategies for synergistic abiotic and biotic chlorinated ethenes reduction, and highlights that specialized consortia may benefit Cr (VI) bio-reduction.
ContributorsMohana Rangan, Srivatsan (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Delgado, Anca G (Thesis advisor) / Torres, César I (Committee member) / van Paassen, Leon (Committee member) / Arizona State University (Publisher)
Created2022
153982-Thumbnail Image.png
Description
Bioremediation of trichloroethene (TCE) using Dehalococcoides mccartyi-containing microbial cultures is a recognized and successful remediation technology. Our work with an upflow anaerobic sludge blanket (UASB) reactor has shown that high-performance, fast-rate dechlorination of TCE can be achieved by promoting bioflocculation of Dehalococcoides mccartyi-containing cultures. The bioreactor achieved high maximum conversion

Bioremediation of trichloroethene (TCE) using Dehalococcoides mccartyi-containing microbial cultures is a recognized and successful remediation technology. Our work with an upflow anaerobic sludge blanket (UASB) reactor has shown that high-performance, fast-rate dechlorination of TCE can be achieved by promoting bioflocculation of Dehalococcoides mccartyi-containing cultures. The bioreactor achieved high maximum conversion rates of 1.63 ± 0.012 mmol Cl- Lculture-1 h-1 at an HRT of 3.6 hours and >97% dechlorination of TCE to ethene while continuously fed 2 mM TCE. The UASB generated bioflocs from a microbially heterogeneous dechlorinating culture and produced Dehalococcoides mccartyi densities of 1.73x10-13 cells Lculture-1 indicating that bioflocculation of Dehalococcoides mccartyi-containing cultures can lead to high density inocula and high-performance, fast-rate bioaugmentation culture for in situ treatment. The successful operation of our pilot scale bioreactor led to the assessment of the technology as an onsite ex-situ treatment system. The bioreactor was then fed TCE-contaminated groundwater from the Motorola Inc. 52nd Street Plant Superfund site in Phoenix, AZ augmented with the lactate and methanol. The bioreactor maintained >99% dechlorination of TCE to ethene during continuous operation at an HRT of 3.2 hours. Microbial community analysis under both experimental conditions reveals shifts in the community structure although maintaining high rate dechlorination. High density dechlorinating cultures containing bioflocs can provide new ways to 1) produce dense bioaugmentation cultures, 2) perform ex-situ bioremediation of TCE, and 3) increase our understanding of Dehalococcoides mccartyi critical microbial interactions that can be exploited at contaminated sites in order to improve long-term bioremediation schemes.
ContributorsFajardo-Williams, Devyn (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Torres, César I (Committee member) / Popat, Sudeep C (Committee member) / Arizona State University (Publisher)
Created2015
157944-Thumbnail Image.png
Description
Electro-Selective Fermentation (ESF) combines Selective Fermentation (SF) and a Microbial Electrolysis Cell (MEC) to selectively degrade carbohydrate and protein in lipid-rich microalgae biomass, enhancing lipid wet-extraction. In addition, saturated long-chain fatty acids (LCFAs) are produced via β-oxidation. This dissertation builds understanding of the biochemical phenomena and microbial interactions

Electro-Selective Fermentation (ESF) combines Selective Fermentation (SF) and a Microbial Electrolysis Cell (MEC) to selectively degrade carbohydrate and protein in lipid-rich microalgae biomass, enhancing lipid wet-extraction. In addition, saturated long-chain fatty acids (LCFAs) are produced via β-oxidation. This dissertation builds understanding of the biochemical phenomena and microbial interactions occurring among fermenters, lipid biohydrogenaters, and anode respiring bacteria (ARB) in ESF. The work begins by proving that ESF is effective in enhancing lipid wet-extraction from Scenedesmus acutus biomass, while also achieving “biohydrogenation” to produce saturated LCFAs. Increasing anode respiration effectively scavenges short chain fatty acids (SCFAs) generated by fermentation, reducing electron loss. However, the effectiveness of ESF depends on biochemical characteristics of the feeding biomass (FB). Four different FB batches yield different lipid-extraction performances, based on the composition of FB’s cellular structure. Finally, starting an ESF reactor with a long solid retention time (SRT), but then switching it to a short SRT provides high lipid extractability and volumetric production with low lipid los. Lipid fermenters can be flushed out with short a SRT, but starting with a short SRT fails achieve good results because fermenters needed to degrading algal protective layers also are flushed out and fail to recover when a long SRT is imposed. These results point to a potentially useful technology to harvest lipid from microalgae, as well as insight about how this technology can be best managed.
ContributorsLiu, Yuanzhen (Author) / Rittmann, Bruce E. (Thesis advisor) / Torres, César I (Committee member) / Krajmalnik-Brown, Rosa (Committee member) / Arizona State University (Publisher)
Created2019
158299-Thumbnail Image.png
Description
Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant

Seeking to address sustainability issues associated with food waste (FW), and fat, oil, and grease (FOG) waste disposal, the City of Mesa commissioned the Biodesign Swette Center for Environmental Biotechnology (BSCEB) at Arizona State University (ASU) to study to the impact of implementing FW/FOG co-digestion at the wastewater treatment plant (WWTP). A key issue for the study was the “souring” of the anaerobic digesters (ADs), which means that the microorganism responsible for organic degradation were deactivated, causing failure of the AD. Several bench-scale reactors soured after the introduction of the FW/FOG feed streams. By comparing measurements from stable with measurements from the souring reactors, I identified two different circumstances responsible for souring events. One set of reactors soured rapidly after the introduction of FW/FOG due to the digester’s hydraulic retention times (HRT) becoming too short for stable operation. A second set of reactors soured after a long period of stability due to steady accumulation of fatty acids (FAs) that depleted bicarbonate alkalinity. FA accumulation was caused by the incomplete hydrolysis/fermentation of feedstock protein, leading to insufficient release of ammonium (NH4+). In contrast, carbohydrates were more rapidly hydrolyzed and fermented to FAs.

The most important contribution of my research is that I identified several leading indicators of souring. In all cases of souring, the accumulation of soluble chemical oxygen demand (SCOD) was an early and easily quantified indicator. A shift in effluent FA concentrations from shorter to longer species also portended souring. A reduction in the yield of methane (CH4) per mass of volatile suspended solids removed (VSSR) also identified souring conditions, but its variability prevented the methane yield from providing advanced warning to allow intervention. For the rapidly soured reactors, reduced bicarbonate alkalinity was the most useful warning sign, and an increasing ratio of SCOD to bicarbonate alkalinity was the clearest sign of souring. Because I buffered the slow-souring reactors with calcium carbonate (CaCO3), I could not rely on bicarbonate alkalinity as an indicator, which put a premium on SCOD as the early warning. I implemented two buffering regimes and demonstrated that early and consistent buffering could lead to reactor recovery.
ContributorsKupferer III, Rick Anthony (Author) / Rittmann, Bruce E. (Thesis advisor) / Young, Michelle N (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2020
151393-Thumbnail Image.png
Description
DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to

DehaloR^2 is a previously characterized, trichloroethene (TCE)-dechlorinating culture and contains bacteria from the known dechlorinating genus, Dehalococcoides. DehaloR^2 was exposed to three anthropogenic contaminants, Triclocarban (TCC), tris(2-chloroethyl) phosphate (TCEP), and 1,1,1-trichloroethane (TCA) and two biogenic-like halogenated compounds, 2,6-dibromophenol (2,6-DBP) and 2,6-dichlorophenol (2,6-DCP). The effects on TCE dechlorination ability due to 2,6-DBP and 2,6-DCP exposures were also investigated. DehaloR^2 did not dechlorinate TCC or TCEP. After initial exposure to TCA, half of the initial TCA was dechlorinated to 1,1-dichloroethane (DCA), however half of the TCA remained by day 100. Subsequent TCA and TCE re-exposure showed no reductive dechlorination activity for both TCA and TCE by 120 days after the re-exposure. It has been hypothesized that the microbial TCE-dechlorinating ability was developed before TCE became abundant in groundwater. This dechlorinating ability would have existed in the microbial metabolism due to previous exposure to biogenic halogenated compounds. After observing the inability of DehaloR^2 to dechlorinate other anthropogenic compounds, DehaloR^2 was then exposed to two naturally occurring halogenated phenols, 2,6-DBP and 2,6-DCP, in the presence and absence of TCE. DehaloR^2 debrominated 2,6-DBP through the intermediate 2-bromophenol (2-BP) to the end product phenol faster in the presence of TCE. DehaloR^2 dechlorinated 2,6-DCP to 2-CP in the absence of TCE; however, 2,6-DCP dechlorination was incomplete in the presence of TCE. Additionally, when 2,6-DBP was present, complete TCE dechlorination to ethene occurred more quickly than when TCE was present without 2,6-DBP. However, when 2,6-DCP was present, TCE dechlorination to ethene had not completed by day 55. The increased dehalogenation rate of 2,6-DBP and TCE when present together compared to conditions containing only 2,6-DBP or only TCE suggests a possible synergistic relationship between 2,6-DBP and TCE, while the decreased dechlorination rate of 2,6-DCP and TCE when present together compared to conditions containing only 2,6-DCP or only TCE suggests an inhibitory effect.
ContributorsKegerreis, Kylie (Author) / Krajmalnik-Brown, Rosa (Thesis advisor) / Halden, Rolf U. (Committee member) / Torres, César I (Committee member) / Arizona State University (Publisher)
Created2012