This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 11 - 20 of 475
Filtering by

Clear all filters

149894-Thumbnail Image.png
Description
Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I

Non-native saltcedar (Tamarix spp.) has invaded many riparian communities and is the third most abundant tree in Southwestern riparian areas. I evaluated lizard populations and microhabitat selection during 2009 and 2010 along the Virgin River in Nevada and Arizona to determine the impact of saltcedar. Along the riparian corridor, I observed common side-blotched lizards (Uta stansburiana) within two vegetation types: monotypic non-native saltcedar stands or mixed stands of cottonwood (Populus fremontii), willow (Salix spp.), mesquite (Prosopis spp.) and saltcedar. I predicted that population parameters such as body condition, adult to hatchling ratio, abundance, and persistence would vary among vegetation types. Also, I predicted the presence of saltcedar influences how lizards utilize available habitat. Lizard population parameters were obtained from a mark-recapture study in which I captured 233 individual lizards. I examined habitat selection and habitat availability using visual encounter surveys (VES) for lizards and recorded 11 microhabitat variables where 16 lizards were found. I found no significant difference in population parameters between mixed and non-native saltcedar communities. However, population parameters were negatively correlated with canopy cover. I found that lizards selected habitat with low understory and canopy cover regardless of vegetation type. My results indicate that lizards utilize similar structural characteristics in both mixed and non-native vegetation. Understanding impacts of saltcedar on native fauna is important for managers who are tasked with control and management of this non-native species.
ContributorsNielsen, Danny (Author) / Bateman, Heather L. (Thesis advisor) / Miller, William H. (Committee member) / Sullivan, Brian K. (Committee member) / Arizona State University (Publisher)
Created2011
149920-Thumbnail Image.png
Description
This study addresses the landscape connectivity pattern at two different scales. The county-level analysis aims to understand how urban ecosystem structure is likely to evolve in response to the proposed development plans in Maricopa County, Arizona. To identify the spatio-temporal land pattern change, six key landscape metrics were quantified in

This study addresses the landscape connectivity pattern at two different scales. The county-level analysis aims to understand how urban ecosystem structure is likely to evolve in response to the proposed development plans in Maricopa County, Arizona. To identify the spatio-temporal land pattern change, six key landscape metrics were quantified in relative to the urban development scenarios based on the certainty of the proposed urban plans with different level of urban footprints. The effects of future development plans from municipalities on landscape connectivity were then analyzed in the scaled temporal and spatial frame to identify in which urban condition the connectivity value would most likely to decrease. The results demonstrated that tremendous amount of lands will be dedicated to future urbanization, and especially urban agricultural lands will be likely to be vulnerable. The metro-level analysis focuses on a group of species that represent urban desert landscape and have different degrees of fragmentation sensitivity and habitat type requirement. It hypothesizes that the urban habitat patch connectivity is impacted upon by urban density. Two underlying propositions were set: first, lower connectivity is predominant in areas with high urbanization cover; second, landscape connectivity will be impacted largely on the interfaces between urban, suburban, and rural areas. To test this, a GIS-based connectivity modeling was employed. The resultant change in connectivity values was examined for exploring the spatial relation to predefined spatial frames, such as urban, suburban, and rural zones of which boundaries were delineated by buffering method with two criteria of human population density and urban cover proportion. The study outcomes provide a practical guidance to minimize connectivity loss and degradation by informing planners with more optimal alternatives among various policy decisions and implementation. It also gives an inspiration for ecological landscape planning in urbanized or urbanizing regions which can ultimately leads urban landscape sustainability.
ContributorsPak, So-hyŏn (Author) / Cook, Edward (Thesis advisor) / Crewe, Katherine (Committee member) / Wu, Jianguo (Jingle) (Committee member) / Arizona State University (Publisher)
Created2011
149833-Thumbnail Image.png
Description
ABSTRACT The elephant tree, Bursera microphylla, is at the northern limit of its range in central Arizona. This species is sensitive to frost damage thus limiting its occurrence in more northern areas of the southwest. Marginal populations of B. microphylla are found in mountain ranges of Central Arizona and are

ABSTRACT The elephant tree, Bursera microphylla, is at the northern limit of its range in central Arizona. This species is sensitive to frost damage thus limiting its occurrence in more northern areas of the southwest. Marginal populations of B. microphylla are found in mountain ranges of Central Arizona and are known to occur in the rugged mountain range system of the South Mountain Municipal Park (SMMP). Little is known of the distribution of this species within the park and details relevant to the health of both individual plants and the population such as diameter and number of trunks, height, and presence of damage have not been examined. This study was designed, in part, to test the hypothesis that favorable microhabitats at SMMP are created by particular combinations of abiotic features including aspect, slope, elevation and solar radiation. Data on abiotic factors, as well as specific individual plant locations and characteristics were obtained for 100 individuals. Temperature data was collected in vertical transects at different altitudinal levels. Some of these data were used in spatial analyses to generate a habitat suitability model using GIS software. Furthermore, collected data was analyzed using Matlab© software to identify potential trends in the variation of morphological traits. In addition, for comparative purposes similar information at one hundred computer-generated randomly chosen points throughout SMMP was obtained. The GIS spatial analyses indicated that aspect, slope, elevation, and relative solar radiance are strongly associated as major climatic components of the microhabitat of B. microphylla. Temperature data demonstrated that there are significant differences in ambient temperature among different altitudinal gradients with middle elevations being more favorable. Furthermore, analyses performed using Matlab© to explore trends of elevation as a factor indicated that multiple trunk plants are more commonly found at higher elevations than single trunk plants, there is a positive correlation of trunk diameter with elevation, and that canopy volume has a negative correlation with respect to elevation. It was concluded that microhabitats where B. microphylla occurs at the northern limit of its range require a particular combination of abiotic features that can be easily altered by climatic changes.
ContributorsCordova, Cesar, M.S (Author) / Steele, Kelly P. (Thesis advisor) / Tridane, Abdessaman (Committee member) / Miller, William (Committee member) / Brady, Ward (Committee member) / Arizona State University (Publisher)
Created2011
149822-Thumbnail Image.png
Description
It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive

It is estimated that wind induced soil transports more than 500 x 106 metric tons of fugitive dust annually. Soil erosion has negative effects on human health, the productivity of farms, and the quality of surface waters. A variety of different polymer stabilizers are available on the market for fugitive dust control. Most of these polymer stabilizers are expensive synthetic polymer products. Their adverse effects and expense usually limits their use. Biopolymers provide a potential alternative to synthetic polymers. They can provide dust abatement by encapsulating soil particles and creating a binding network throughout the treated area. This research into the effectiveness of biopolymers for fugitive dust control involved three phases. Phase I included proof of concept tests. Phase II included carrying out the tests in a wind tunnel. Phase III consisted of conducting the experiments in the field. Proof of concept tests showed that biopolymers have the potential to reduce soil erosion and fugitive dust transport. Wind tunnel tests on two candidate biopolymers, xanthan and chitosan, showed that there is a proportional relationship between biopolymer application rates and threshold wind velocities. The wind tunnel tests also showed that xanthan gum is more successful in the field than chitosan. The field tests showed that xanthan gum was effective at controlling soil erosion. However, the chitosan field data was inconsistent with the xanthan data and field data on bare soil.
ContributorsAlsanad, Abdullah (Author) / Kavazanjian, Edward (Thesis advisor) / Edwards, David (Committee member) / Zapata, Claudia (Committee member) / Arizona State University (Publisher)
Created2011
149877-Thumbnail Image.png
Description
The original mediums were not texts or technologies; they were ritual actors performing acts of mediumship. Mediating between determined norms (the status quo) and emergent trends (change), they invoked divine authority to conjure meanings that proved adaptive, nonadaptive and/or maladaptive. With the advent of the written word, ritual became

The original mediums were not texts or technologies; they were ritual actors performing acts of mediumship. Mediating between determined norms (the status quo) and emergent trends (change), they invoked divine authority to conjure meanings that proved adaptive, nonadaptive and/or maladaptive. With the advent of the written word, ritual became formalized and codified. The medium became a communication device, something abstract and external to the human condition. It then became possible to speak of "media effects" imposing influence in a logical deterministic manner. Yet with the advent of new media, we are witnessing a return to modes of cultural discourse that are spontaneous, interactive, communal and unscripted, all hallmarks of ritual action. This "ritual return" centers on the emergence of the "prosumer" (producer/consumer), a figure actively engaged in mediating practices. While resembling the original archaic "medium" in some respects, the prosumer is a "literate ritualist" allied with a multiplicity of cultural tribes. Thus the "new media" has given rise to "the new medium." The pages that follow focus on acts of contemporary mediumship, examining related concepts such as "ecology," "niche," "role," "affordance," and "trope." Each section considers how specific mediating practices afford and constrain modes of ritualized behavior. I call this practice-oriented approach to media studies "praxism."
ContributorsGyori, Bradford (Author) / Goggin, Maureen (Thesis advisor) / Baker, Aaron (Committee member) / Hjorleifur Jonsson (Committee member) / Arizona State University (Publisher)
Created2011
150168-Thumbnail Image.png
Description
Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation

Like individual organisms, complex social groups are able to maintain predictable trajectories of growth, from initial colony foundation to mature reproductively capable units. They do so while simultaneously responding flexibly to variation in nutrient availability and intake. Leafcutter ant colonies function as tri-trophic systems, in which the ants harvest vegetation to grow a fungus that, in turn, serves as food for the colony. Fungal growth rates and colony worker production are interdependent, regulated by nutritional and behavioral feedbacks. Fungal growth and quality are directly affected by worker foraging decisions, while worker production is, in turn, dependent on the amount and condition of the fungus. In this dissertation, I first characterized the growth relationship between the workers and the fungus of the desert leafcutter ant Acromyrmex versicolor during early stages of colony development, from colony foundation by groups of queens through the beginnings of exponential growth. I found that this relationship undergoes a period of slow growth and instability when workers first emerge, and then becomes allometrically positive. I then evaluated how mass and element ratios of resources collected by the ants are translated into fungus and worker population growth, and refuse, finding that colony digestive efficiency is comparable to digestive efficiencies of other herbivorous insects and ruminants. To test how colonies behaviorally respond to perturbations of the fungus garden, I quantified activity levels and task performance of workers in colonies with either supplemented or diminished fungus gardens, and found that colonies adjusted activity and task allocation in response to the fungus garden size. Finally, to identify possible forms of nutrient limitation, I measured how colony performance was affected by changes in the relative amounts of carbohydrates, protein, and phosphorus available in the resources used to grow the fungus garden. From this experiment, I concluded that colony growth is primarily carbohydrate-limited.
ContributorsClark, Rebecca, 1981- (Author) / Fewell, Jennifer H (Thesis advisor) / Mueller, Ulrich (Committee member) / Liebig, Juergen (Committee member) / Elser, James (Committee member) / Harrison, Jon (Committee member) / Arizona State University (Publisher)
Created2011
150177-Thumbnail Image.png
Description
Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a

Local municipalities in the Phoenix Metropolitan Area have voiced an interest in purchasing alternate source water with lower DBP precursors. Along the primary source is a hydroelectric dam in which water will be diverted from. This project is an assessment of optimizing the potential blends of source water to a water treatment plant in an effort to enable them to more readily meet DBP regulations. To perform this analysis existing water treatment models were used in conjunction with historic water quality sampling data to predict chemical usage necessary to meet DBP regulations. A retrospective analysis was performed for the summer months of 2007 regarding potential for the WTP to reduce cost through optimizing the source water by an average of 30% over the four-month period, accumulating to overall treatment savings of $154 per MG ($82 per AF).
ContributorsRice, Jacelyn (Author) / Westerhoff, Paul (Thesis advisor) / Fox, Peter (Committee member) / Hristovski, Kiril (Committee member) / Arizona State University (Publisher)
Created2011
150253-Thumbnail Image.png
Description
Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were

Second-generation biofuel feedstocks are currently grown in land-based systems that use valuable resources like water, electricity and fertilizer. This study investigates the potential of near-shore marine (ocean) seawater filtration as a source of planktonic biomass for biofuel production. Mixed marine organisms in the size range of 20µm to 500µm were isolated from the University of California, Santa Barbara (UCSB) seawater filtration system during weekly backwash events between the months of April and August, 2011. The quantity of organic material produced was determined by sample combustion and calculation of ash-free dry weights. Qualitative investigation required density gradient separation with the heavy liquid sodium metatungstate followed by direct transesterification and gas chromatography with mass spectrometry (GC-MS) of the fatty acid methyl esters (FAME) produced. A maximum of 0.083g/L of dried organic material was produced in a single backwash event and a study average of 0.036g/L was calculated. This equates to an average weekly value of 7,674.75g of dried organic material produced from the filtration of approximately 24,417,792 liters of seawater. Temporal variations were limited. Organic quantities decreased over the course of the study. Bio-fouling effects from mussel overgrowth inexplicably increased production values when compared to un-fouled seawater supply lines. FAMEs (biodiesel) averaged 0.004% of the dried organic material with 0.36ml of biodiesel produced per week, on average. C16:0 and C22:6n3 fatty acids comprised the majority of the fatty acids in the samples. Saturated fatty acids made up 30.71% to 44.09% and unsaturated forms comprised 55.90% to 66.32% of the total chemical composition. Both quantities and qualities of organics and FAMEs were unrealistic for use as biodiesel but sample size limitations, system design, geographic and temporal factors may have impacted study results.
ContributorsPierre, Christophe (Author) / Olson, Larry (Thesis advisor) / Sommerfeld, Milton (Committee member) / Brown, Albert (Committee member) / Arizona State University (Publisher)
Created2011
150162-Thumbnail Image.png
Description
Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the

Disinfection byproducts are the result of reactions between natural organic matter (NOM) and a disinfectant. The formation and speciation of DBP formation is largely dependent on the disinfectant used and the natural organic matter (NOM) concentration and composition. This study examined the use of photocatalysis with titanium dioxide for the oxidation and removal of DBP precursors (NOM) and the inhibition of DBP formation. Water sources were collected from various points in the treatment process, treated with photocatalysis, and chlorinated to analyze the implications on total trihalomethane (TTHM) and the five haloacetic acids (HAA5) formations. The three sub-objectives for this study included: the comparison of enhanced and standard coagulation to photocatalysis for the removal of DBP precursors; the analysis of photocatalysis and characterization of organic matter using size exclusion chromatography and fluorescence spectroscopy and excitation-emission matrices; and the analysis of photocatalysis before GAC filtration. There were consistencies in the trends for each objective including reduced DBP precursors, measured as dissolved organic carbon DOC concentration and UV absorbance at 254 nm. Both of these parameters decreased with increased photocatalytic treatment and could be due in part to the adsorption to as well as the oxidation of NOM on the TiO2 surface. This resulted in lower THM and HAA concentrations at Medium and High photocatalytic treatment levels. However, at No UV exposure and Low photocatalytic treatment levels where oxidation reactions were inherently incomplete, there was an increase in THM and HAA formation potential, in most cases being significantly greater than those found in the raw water or Control samples. The size exclusion chromatography (SEC) results suggest that photocatalysis preferentially degrades the higher molecular mass fraction of NOM releasing lower molecular mass (LMM) compounds that have not been completely oxidized. The molecular weight distributions could explain the THM and HAA formation potentials that decreased at the No UV exposure samples but increased at Low photocatalytic treatment levels. The use of photocatalysis before GAC adsorption appears to increase bed life of the contactors; however, higher photocatalytic treatment levels have been shown to completely mineralize NOM and would therefore not require additional GAC adsorption after photocatalysis.
ContributorsDaugherty, Erin (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Mayer, Brooke (Committee member) / Arizona State University (Publisher)
Created2011
150280-Thumbnail Image.png
Description
Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have

Climate change has the potential to affect vegetation via changes in temperature and precipitation. In the semi-arid southwestern United States, heightened temperatures will likely lead to accelerated groundwater pumping to meet human needs, and altered storm patterns may lead to changes in flood regimes. All of these hydrologic changes have the potential to alter riparian vegetation. This research, consisting of two papers, examines relationships between hydrology and riparian vegetation along the Verde River in central Arizona, from applied and theoretical perspectives. One paper investigates how dominance of tree and shrub species and cover of certain functional groups change along hydrologic gradients. The other paper uses the Verde River flora along with that river's flood and moisture gradients to answer the question of whether functional groups can be defined universally. Drying of the Verde River would lead to a shift from cottonwood-willow streamside forest to more drought adapted desert willow or saltcedar, a decline in streamside marsh species, and decreased species richness. Effects drying will have on one dominant forest tree, velvet ash, is unclear. Increase in the frequency of large floods would potentially increase forest density and decrease average tree age and diameter. Correlations between functional traits of Verde River plants and hydrologic gradients are consistent with "leaf economics," or the axis of resource capture, use, and release, as the primary strategic trade-off for plants. This corresponds to the competitor-stress tolerator gradient in Grime's life history strategy theory. Plant height was also a strong indicator of hydrologic condition, though it is not clear from the literature if plant height is independent enough of leaf characteristics on a global scale to be considered a second axis. Though the ecohydrologic relationships are approached from different perspectives, the results of the two papers are consistent if interpreted together. The species that are currently dominant in the near-channel Verde River floodplain are tall, broad-leaf trees, and the species that are predicted to become more dominant in the case of the river drying are shorter trees or shrubs with smaller leaves. These results have implications for river and water management, as well as theoretical ecology.
ContributorsHazelton, Andrea Florence (Author) / Stromberg, Juliet C. (Thesis advisor) / Schmeeckle, Mark W (Committee member) / Franklin, Janet (Committee member) / Arizona State University (Publisher)
Created2011