This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 10 of 449
Filtering by

Clear all filters

151688-Thumbnail Image.png
Description
This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version

This study empirically evaluated the effectiveness of the instructional design, learning tools, and role of the teacher in three versions of a semester-long, high-school remedial Algebra I course to determine what impact self-regulated learning skills and learning pattern training have on students' self-regulation, math achievement, and motivation. The 1st version was a business-as-usual traditional classroom teaching mathematics with direct instruction. The 2rd version of the course provided students with self-paced, individualized Algebra instruction with a web-based, intelligent tutor. The 3rd version of the course coupled self-paced, individualized instruction on the web-based, intelligent Algebra tutor coupled with a series of e-learning modules on self-regulated learning knowledge and skills that were distributed throughout the semester. A quasi-experimental, mixed methods evaluation design was used by assigning pre-registered, high-school remedial Algebra I class periods made up of an approximately equal number of students to one of the three study conditions or course versions: (a) the control course design, (b) web-based, intelligent tutor only course design, and (c) web-based, intelligent tutor + SRL e-learning modules course design. While no statistically significant differences on SRL skills, math achievement or motivation were found between the three conditions, effect-size estimates provide suggestive evidence that using the SRL e-learning modules based on ARCS motivation model (Keller, 2010) and Let Me Learn learning pattern instruction (Dawkins, Kottkamp, & Johnston, 2010) may help students regulate their learning and improve their study skills while using a web-based, intelligent Algebra tutor as evidenced by positive impacts on math achievement, motivation, and self-regulated learning skills. The study also explored predictive analyses using multiple regression and found that predictive models based on independent variables aligned to student demographics, learning mastery skills, and ARCS motivational factors are helpful in defining how to further refine course design and design learning evaluations that measure achievement, motivation, and self-regulated learning in web-based learning environments, including intelligent tutoring systems.
ContributorsBarrus, Angela (Author) / Atkinson, Robert K (Thesis advisor) / Van de Sande, Carla (Committee member) / Savenye, Wilhelmina (Committee member) / Arizona State University (Publisher)
Created2013
152228-Thumbnail Image.png
Description
ABSTRACT This study describes student interactions in the academic social network site Edmodo versus student interactions in Facebook. This qualitative case study relies upon four high school juniors enrolled in Advanced Placement Language and Composition who use Edmodo to complete assignments for their English class. Their experiences were gathered in

ABSTRACT This study describes student interactions in the academic social network site Edmodo versus student interactions in Facebook. This qualitative case study relies upon four high school juniors enrolled in Advanced Placement Language and Composition who use Edmodo to complete assignments for their English class. Their experiences were gathered in an attempt to describe specific experiences in a complex system. Students were selected using an Internet Connectedness Index survey. Using a Virtual Community of Practice framework, students were asked about their experiences in Edmodo. This study concludes that Edmodo and Facebook can be compared in three categories: accessibility, functionality, and environment. Unlike Facebook, which students access regularly, students access Edmodo only to fulfill the teacher's participation expectations for the specific grade they wish to receive. Additionally, students appreciated the convenience of using Edmodo to complete assignments. The functionality of Edmodo is quite similar in layout and appearance to Facebook, yet students were unaware of the media sharing capability, wished for private messaging options, and desired the ability to tag peers for direct comment using the @ sign, all options that are available in Facebook. Students felt the environment in Edmodo could best be characterized as intellectual and academic, which some mentioned might best be used with honors or AP students. A surprising benefit of Edmodo is the lack of social cues enable students to feel free of judgment when composing writing. Some felt this allowed students to know their classmates better and share their true personae free from judgment of classmates. As a result of the case studies of four students, this study seeks to illustrate how students interact in Edmodo versus Facebook to provide a robust image of the academic social network site for teachers seeking to implement educational technology in their classes.
ContributorsCurran-Sejkora, Elizabeth (Author) / Blasingame, James (Thesis advisor) / Nilsen, Alleen (Committee member) / Rodrigo, Rochelle (Committee member) / Turchi, Laura (Committee member) / Arizona State University (Publisher)
Created2013
152234-Thumbnail Image.png
Description
One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of

One of the main challenges in planetary robotics is to traverse the shortest path through a set of waypoints. The shortest distance between any two waypoints is a direct linear traversal. Often times, there are physical restrictions that prevent a rover form traversing straight to a waypoint. Thus, knowledge of the terrain is needed prior to traversal. The Digital Terrain Model (DTM) provides information about the terrain along with waypoints for the rover to traverse. However, traversing a set of waypoints linearly is burdensome, as the rovers would constantly need to modify their orientation as they successively approach waypoints. Although there are various solutions to this problem, this research paper proposes the smooth traversability of the rover using splines as a quick and easy implementation to traverse a set of waypoints. In addition, a rover was used to compare the smoothness of the linear traversal along with the spline interpolations. The data collected illustrated that spline traversals had a less rate of change in the velocity over time, indicating that the rover performed smoother than with linear paths.
ContributorsKamasamudram, Anurag (Author) / Saripalli, Srikanth (Thesis advisor) / Fainekos, Georgios (Thesis advisor) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2013
152179-Thumbnail Image.png
Description
As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite

As the complexity of robotic systems and applications grows rapidly, development of high-performance, easy to use, and fully integrated development environments for those systems is inevitable. Model-Based Design (MBD) of dynamic systems using engineering software such as Simulink® from MathWorks®, SciCos from Metalau team and SystemModeler® from Wolfram® is quite popular nowadays. They provide tools for modeling, simulation, verification and in some cases automatic code generation for desktop applications, embedded systems and robots. For real-world implementation of models on the actual hardware, those models should be converted into compilable machine code either manually or automatically. Due to the complexity of robotic systems, manual code translation from model to code is not a feasible optimal solution so we need to move towards automated code generation for such systems. MathWorks® offers code generation facilities called Coder® products for this purpose. However in order to fully exploit the power of model-based design and code generation tools for robotic applications, we need to enhance those software systems by adding and modifying toolboxes, files and other artifacts as well as developing guidelines and procedures. In this thesis, an effort has been made to propose a guideline as well as a Simulink® library, StateFlow® interface API and a C/C++ interface API to complete this toolchain for NAO humanoid robots. Thus the model of the hierarchical control architecture can be easily and properly converted to code and built for implementation.
ContributorsRaji Kermani, Ramtin (Author) / Fainekos, Georgios (Thesis advisor) / Lee, Yann-Hang (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2013
152244-Thumbnail Image.png
Description
Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR)

Statistics is taught at every level of education, yet teachers often have to assume their students have no knowledge of statistics and start from scratch each time they set out to teach statistics. The motivation for this experimental study comes from interest in exploring educational applications of augmented reality (AR) delivered via mobile technology that could potentially provide rich, contextualized learning for understanding concepts related to statistics education. This study examined the effects of AR experiences for learning basic statistical concepts. Using a 3 x 2 research design, this study compared learning gains of 252 undergraduate and graduate students from a pre- and posttest given before and after interacting with one of three types of augmented reality experiences, a high AR experience (interacting with three dimensional images coupled with movement through a physical space), a low AR experience (interacting with three dimensional images without movement), or no AR experience (two dimensional images without movement). Two levels of collaboration (pairs and no pairs) were also included. Additionally, student perceptions toward collaboration opportunities and engagement were compared across the six treatment conditions. Other demographic information collected included the students' previous statistics experience, as well as their comfort level in using mobile devices. The moderating variables included prior knowledge (high, average, and low) as measured by the student's pretest score. Taking into account prior knowledge, students with low prior knowledge assigned to either high or low AR experience had statistically significant higher learning gains than those assigned to a no AR experience. On the other hand, the results showed no statistical significance between students assigned to work individually versus in pairs. Students assigned to both high and low AR experience perceived a statistically significant higher level of engagement than their no AR counterparts. Students with low prior knowledge benefited the most from the high AR condition in learning gains. Overall, the AR application did well for providing a hands-on experience working with statistical data. Further research on AR and its relationship to spatial cognition, situated learning, high order skill development, performance support, and other classroom applications for learning is still needed.
ContributorsConley, Quincy (Author) / Atkinson, Robert K (Thesis advisor) / Nguyen, Frank (Committee member) / Nelson, Brian C (Committee member) / Arizona State University (Publisher)
Created2013
151862-Thumbnail Image.png
Description
This dissertation describes the development of a state-of-the-art immersive media environment and its potential to motivate high school youth with autism to vocally express themselves. Due to the limited availability of media environments in public education settings, studies on the use of such systems in special education contexts are rare.

This dissertation describes the development of a state-of-the-art immersive media environment and its potential to motivate high school youth with autism to vocally express themselves. Due to the limited availability of media environments in public education settings, studies on the use of such systems in special education contexts are rare. A study called Sea of Signs utilized the Situated Multimodal Art Learning Lab (SMALLab), to present a custom-designed conversational scenario for pairs of youth with autism. Heuristics for building the scenario were developed following a 4-year design-based research approach that fosters social interaction, communication, and self-expression through embodied design. Sea of Signs implemented these heuristics through an immersive experience, supported by spatial and audio-visual feedback that helped clarify and reinforce students' vocal expressions within a partner-based conversational framework. A multiple-baseline design across participants was used to determine the extent to which individuals exhibited observable change as a result of the activity in SMALLab. Teacher interviews were conducted prior to the experimental phase to identify each student's pattern of social interaction, communication, and problem-solving strategies in the classroom. Ethnographic methods and video coding were used throughout the experimental phase to assess whether there were changes in (a) speech duration per session and per turn, (b) turn-taking patterns, and (c) teacher prompting per session. In addition, teacher interviews were conducted daily after every SMALLab session to further triangulate the nature of behaviors observed in each session. Final teacher interviews were conducted after the experimental phase to collect data on possible transfer of behavioral improvements into students' classroom lives beyond SMALLab. Results from this study suggest that the activity successfully increased independently generated speech in some students, while increasing a focus on seeking out social partners in others. Furthermore, the activity indicated a number of future directions in research on the nature of voice and discourse, rooted in the use of aesthetics and phenomenology, to augment, extend, and encourage developments in directed communication skills for youth with autism.
ContributorsTolentino, Lisa (Author) / Paine, Garth (Thesis advisor) / Kozleski, Elizabeth B. (Thesis advisor) / Kelliher, Aisling (Committee member) / Megowan-Romanowicz, Colleen (Committee member) / Arizona State University (Publisher)
Created2013
152039-Thumbnail Image.png
Description
An integral part of teacher development are teacher observations. Many teachers are observed once or twice a year to evaluate their performance and hold them accountable for meeting standards. Instructional coaches, however, observe and work with teachers to help them reflect on their performance, with the goal of improving their

An integral part of teacher development are teacher observations. Many teachers are observed once or twice a year to evaluate their performance and hold them accountable for meeting standards. Instructional coaches, however, observe and work with teachers to help them reflect on their performance, with the goal of improving their practice. Video-based evidence has long been used in connection with teacher reflection and as the technology necessary to record video has become more readily available, video recordings have found an increasing presence in teacher observations. In addition, more and more schools are turning to mobile technology to help record evidence during teacher observations. Several mobile applications have been developed, which are designed to help instructional coaches, administrators, and teachers make the most of teacher observations. This study looked at the use of the DataCapture mobile application to record video-based evidence in teacher observations as part of an instructional coaching program in a large public school district in the Southwestern United States. Six instructional coaches and two teachers participated in interviews at the end of the study period. Additional data was collected from the DataCapture mobile application and from a survey of instructional coaches conducted by the school district in connection with its Title I programs. Results show that instructional coaches feel that using video-based evidence for teacher reflection is effective in a number of ways. Teachers who have experienced seeing themselves on video also felt that video-based evidence is effective at improving teacher reflection, while teachers who have not yet experienced seeing themselves on video displayed extreme apprehensiveness about being video recorded in the classroom. Instructional coaches felt the DataCapture mobile application was beneficial in teacher evaluation, but there were several issues that impacted the use of the mobile application and video-based evidence, including logistics, time requirements, and administrative support. The discussion focuses on recommendations for successfully using video-based evidence in an instructional coaching context, as well as some suggestions for other researchers attempting to study how video-based evidence impacts teachers' ability to reflect on their own teaching.
ContributorsShewell, Justin Reed (Author) / Bitter, Gary (Thesis advisor) / Dawson, Edwin (Committee member) / Blair, Heidi (Committee member) / Arizona State University (Publisher)
Created2013
152071-Thumbnail Image.png
Description
The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into

The development of advanced, anthropomorphic artificial hands aims to provide upper extremity amputees with improved functionality for activities of daily living. However, many state-of-the-art hands have a large number of degrees of freedom that can be challenging to control in an intuitive manner. Automated grip responses could be built into artificial hands in order to enhance grasp stability and reduce the cognitive burden on the user. To this end, three studies were conducted to understand how human hands respond, passively and actively, to unexpected perturbations of a grasped object along and about different axes relative to the hand. The first study investigated the effect of magnitude, direction, and axis of rotation on precision grip responses to unexpected rotational perturbations of a grasped object. A robust "catch-up response" (a rapid, pulse-like increase in grip force rate previously reported only for translational perturbations) was observed whose strength scaled with the axis of rotation. Using two haptic robots, we then investigated the effects of grip surface friction, axis, and direction of perturbation on precision grip responses for unexpected translational and rotational perturbations for three different hand-centric axes. A robust catch-up response was observed for all axes and directions for both translational and rotational perturbations. Grip surface friction had no effect on the stereotypical catch-up response. Finally, we characterized the passive properties of the precision grip-object system via robot-imposed impulse perturbations. The hand-centric axis associated with the greatest translational stiffness was different than that for rotational stiffness. This work expands our understanding of the passive and active features of precision grip, a hallmark of human dexterous manipulation. Biological insights such as these could be used to enhance the functionality of artificial hands and the quality of life for upper extremity amputees.
ContributorsDe Gregorio, Michael (Author) / Santos, Veronica J. (Thesis advisor) / Artemiadis, Panagiotis K. (Committee member) / Santello, Marco (Committee member) / Sugar, Thomas (Committee member) / Helms Tillery, Stephen I. (Committee member) / Arizona State University (Publisher)
Created2013
152076-Thumbnail Image.png
Description
Human fingertips contain thousands of specialized mechanoreceptors that enable effortless physical interactions with the environment. Haptic perception capabilities enable grasp and manipulation in the absence of visual feedback, as when reaching into one's pocket or wrapping a belt around oneself. Unfortunately, state-of-the-art artificial tactile sensors and processing algorithms are no

Human fingertips contain thousands of specialized mechanoreceptors that enable effortless physical interactions with the environment. Haptic perception capabilities enable grasp and manipulation in the absence of visual feedback, as when reaching into one's pocket or wrapping a belt around oneself. Unfortunately, state-of-the-art artificial tactile sensors and processing algorithms are no match for their biological counterparts. Tactile sensors must not only meet stringent practical specifications for everyday use, but their signals must be processed and interpreted within hundreds of milliseconds. Control of artificial manipulators, ranging from prosthetic hands to bomb defusal robots, requires a constant reliance on visual feedback that is not entirely practical. To address this, we conducted three studies aimed at advancing artificial haptic intelligence. First, we developed a novel, robust, microfluidic tactile sensor skin capable of measuring normal forces on flat or curved surfaces, such as a fingertip. The sensor consists of microchannels in an elastomer filled with a liquid metal alloy. The fluid serves as both electrical interconnects and tunable capacitive sensing units, and enables functionality despite substantial deformation. The second study investigated the use of a commercially-available, multimodal tactile sensor (BioTac sensor, SynTouch) to characterize edge orientation with respect to a body fixed reference frame, such as a fingertip. Trained on data from a robot testbed, a support vector regression model was developed to relate haptic exploration actions to perception of edge orientation. The model performed comparably to humans for estimating edge orientation. Finally, the robot testbed was used to perceive small, finger-sized geometric features. The efficiency and accuracy of different haptic exploratory procedures and supervised learning models were assessed for estimating feature properties such as type (bump, pit), order of curvature (flat, conical, spherical), and size. This study highlights the importance of tactile sensing in situations where other modalities fail, such as when the finger itself blocks line of sight. Insights from this work could be used to advance tactile sensor technology and haptic intelligence for artificial manipulators that improve quality of life, such as prosthetic hands and wheelchair-mounted robotic hands.
ContributorsPonce Wong, Ruben Dario (Author) / Santos, Veronica J (Thesis advisor) / Artemiadis, Panagiotis K (Committee member) / Helms Tillery, Stephen I (Committee member) / Posner, Jonathan D (Committee member) / Runger, George C. (Committee member) / Arizona State University (Publisher)
Created2013
151942-Thumbnail Image.png
Description
Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are

Researchers have postulated that math academic achievement increases student success in college (Lee, 2012; Silverman & Seidman, 2011; Vigdor, 2013), yet 80% of universities and 98% of community colleges require many of their first-year students to be placed in remedial courses (Bettinger & Long, 2009). Many high school graduates are entering college ill prepared for the rigors of higher education, lacking understanding of basic and important principles (ACT, 2012). The desire to increase academic achievement is a wide held aspiration in education and the idea of adapting instruction to individuals is one approach to accomplish this goal (Lalley & Gentile, 2009a). Frequently, adaptive learning environments rely on a mastery learning approach, it is thought that when students are afforded the opportunity to master the material, deeper and more meaningful learning is likely to occur. Researchers generally agree that the learning environment, the teaching approach, and the students' attributes are all important to understanding the conditions that promote academic achievement (Bandura, 1977; Bloom, 1968; Guskey, 2010; Cassen, Feinstein & Graham, 2008; Changeiywo, Wambugu & Wachanga, 2011; Lee, 2012; Schunk, 1991; Van Dinther, Dochy & Segers, 2011). The present study investigated the role of college students' affective attributes and skills, such as academic competence and academic resilience, in an adaptive mastery-based learning environment on their academic performance, while enrolled in a remedial mathematics course. The results showed that the combined influence of students' affective attributes and academic resilience had a statistically significant effect on students' academic performance. Further, the mastery-based learning environment also had a significant effect on their academic competence and academic performance.
ContributorsFoshee, Cecile Mary (Author) / Atkinson, Robert K (Thesis advisor) / Elliott, Stephen N. (Committee member) / Horan, John (Committee member) / Arizona State University (Publisher)
Created2013