This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

171945-Thumbnail Image.png
Description
Integrated water resources management for flood control, water distribution, conservation, and food security require understanding hydrological spatial and temporal trends. Proliferation of monitoring and sensor data has boosted data-driven simulation and evaluation. Developing data-driven models for such physical process-related phenomena, and meaningful interpretability therein, necessitates an inventive methodology. In this

Integrated water resources management for flood control, water distribution, conservation, and food security require understanding hydrological spatial and temporal trends. Proliferation of monitoring and sensor data has boosted data-driven simulation and evaluation. Developing data-driven models for such physical process-related phenomena, and meaningful interpretability therein, necessitates an inventive methodology. In this dissertation, I developed time series and deep learning model that connected rainfall, runoff, and fish species abundances. I also investigated the underlying explainabilty for hydrological processes and impacts on fish species. First, I created a streamflow simulation model using computer vision and natural language processing as an alternative to physical-based routing. I tested it on seven US river network sections and showed it outperformed time series models, deep learning baselines, and novel variants. In addition, my model explained flow routing without physical parameter input or time-consuming calibration. On the basis of this model, I expanded it from accepting dispersed spatial inputs to adopting comprehensive 2D grid data. I constructed a spatial-temporal deep leaning model for rainfall-runoff simulation. I tested it against a semi-distributed hydrological model and found superior results. Furthermore, I investigated the potential interpretability for rainfall-runoff process in both space and time. To understand impacts of flow variation on fish species, I applied a frequency based model framework for long term time series data simulation. First, I discovered that timing of hydrological anomalies was as crucial as their size. Flooding and drought, when properly timed, were both linked with excellent fishing productivity. To identify responses of various fish trait groups, I used this model to assess mitigated hydrological variation by fish attributes. Longitudinal migratory fish species were more impacted by flow variance, whereas migratory strategy species reacted in the same direction but to various degrees. Finally, I investigated future fish population changes under alternative design flow scenarios and showed that a protracted low flow with a powerful, on-time flood pulse would benefit fish. In my dissertation, I constructed three data-driven models that link the hydrological cycle to the stream environment and give insight into the underlying physical process, which is vital for quantitative, efficient, and integrated water resource management.
ContributorsDeng, Qi (Author) / Sabo, John (Thesis advisor) / Grimm, Nancy (Thesis advisor) / Ganguly, Auroop (Committee member) / Li, Wenwen (Committee member) / Mascaro, Giuseppe (Committee member) / Arizona State University (Publisher)
Created2022
157123-Thumbnail Image.png
Description
In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable

In the recent past, Iraq was considered relatively rich considering its water resources compared to its surroundings. Currently, the magnitude of water resource shortages in Iraq represents an important factor in the stability of the country and in protecting sustained economic development. The need for a practical, applicable, and sustainable river basin management for the Tigris and Euphrates Rivers in Iraq is essential. Applicable water resources allocation scenarios are important to minimize the potential future water crises in connection with water quality and quantity. The allocation of the available fresh water resources in addition to reclaimed water to different users in a sustainable manner is of the urgent necessities to maintain good water quantity and quality.

In this dissertation, predictive water allocation optimization models were developed which can be used to easily identify good alternatives for water management that can then be discussed, debated, adjusted, and simulated in greater detail. This study provides guidance for decision makers in Iraq for potential future conditions, where water supplies are reduced, and demonstrates how it is feasible to adopt an efficient water allocation strategy with flexibility in providing equitable water resource allocation considering alternative resource. Using reclaimed water will help in reducing the potential negative environmental impacts of treated or/and partially treated wastewater discharges while increasing the potential uses of reclaimed water for agriculture and other applications. Using reclaimed water for irrigation is logical and efficient to enhance the economy of farmers and the environment while providing a diversity of crops, especially since most of Iraq’s built or under construction wastewater treatment plants are located in or adjacent to agricultural lands. Adopting an optimization modelling approach can assist decision makers, ensuring their decisions will benefit the economy by incorporating global experiences to control water allocations in Iraq especially considering diminished water supplies.
ContributorsAhmed, Ahmed Abdulrazzaq (Author) / Mays, Larry W. (Thesis advisor) / Fox, Peter (Thesis advisor) / Mascaro, Giuseppe (Committee member) / Muenich, Rebecca (Committee member) / Arizona State University (Publisher)
Created2019
156100-Thumbnail Image.png
Description
Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is

Population growth within drylands is occurring faster than growth in any other ecologic zone, putting pressure on already stressed water resources. Because the availability of surface water supplies in drylands tends to be highly variable, many of these populations rely on groundwater. A critical process contributing to groundwater recharge is the interaction between ephemeral channels and groundwater aquifers. Generally, it has been found that ephemeral channels contribute to groundwater recharge when streamflow infiltrates into the sandy bottoms of channels. This process has traditionally been studied in channels that drain large areas (10s to 100s km2). In this dissertation, I study the interactions between surface water and groundwater via ephemeral channels in a first-order watershed located on an arid piedmont slope within the Jornada Experimental Range (JER) in the Chihuahuan Desert. To achieve this, I utilize a combination of high-resolution observations and computer simulations using a modified hydrologic model to quantify groundwater recharge and shed light on the geomorphic and ecologic processes that affect the rate of recharge. Observational results indicate that runoff generated within the piedmont slope contributes significantly to deep percolation. During the short-term (6 yr) study period, we estimated 385 mm of total percolation, 62 mm/year, or a ratio of percolation to rainfall of 0.25. Based on the instrument network, we identified that percolation occurs inside channel areas when these receive overland sheetflow from hillslopes. By utilizing a modified version of the hydrologic model, TIN-based Real-time Integrated Basin Simulator (tRIBS), that was calibrated and validated using the observational dataset, I quantified the effects of changing watershed properties on groundwater recharge. Distributed model simulations quantify how deep percolation is produced during the streamflow generation process, and indicate that it plays a significant role in moderating the production of streamflow. Sensitivity analyses reveal that hillslope properties control the amount of rainfall necessary to initiate percolation while channel properties control the partitioning of hillslope runoff into streamflow and deep percolation. Synthetic vegetation experiments show that woody plant encroachment leads to increases in both deep percolation and streamflow. Further woody plant encroachment may result in the unexpected enhancement of dryland aquifer sustainability.
ContributorsSchreiner-McGraw, Adam P (Author) / Vivoni, Enrique R. (Thesis advisor) / Whipple, Kelin X. (Committee member) / Mascaro, Giuseppe (Committee member) / Throop, Heather L. (Committee member) / Sala, Osvaldo E. (Committee member) / Arizona State University (Publisher)
Created2017