This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

155613-Thumbnail Image.png
Description
The purpose of this study was to identify acoustic markers that correlate with accurate and inaccurate /r/ production in children ages 5-8 using signal processing. In addition, the researcher aimed to identify predictive acoustic markers that relate to changes in /r/ accuracy. A total of 35 children (23 accurate, 12

The purpose of this study was to identify acoustic markers that correlate with accurate and inaccurate /r/ production in children ages 5-8 using signal processing. In addition, the researcher aimed to identify predictive acoustic markers that relate to changes in /r/ accuracy. A total of 35 children (23 accurate, 12 inaccurate, 8 longitudinal) were recorded. Computerized stimuli were presented on a PC laptop computer and the children were asked to do five tasks to elicit spontaneous and imitated /r/ production in all positions. Files were edited and analyzed using a filter bank approach centered at 40 frequencies based on the Mel-scale. T-tests were used to compare spectral energy of tokens between accurate and inaccurate groups and additional t-tests were used to compare duration of accurate and inaccurate files. Results included significant differences between the accurate and inaccurate productions of /r/, notable differences in the 24-26 mel bin range, and longer duration of inaccurate /r/ than accurate. Signal processing successfully identified acoustic features of accurate and inaccurate production of /r/ and candidate predictive markers that may be associated with acquisition of /r/.
ContributorsBecvar, Brittany Patricia (Author) / Azuma, Tamiko (Thesis advisor) / Weinhold, Juliet (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2017
161524-Thumbnail Image.png
Description
Contact tracing has been shown to be effective in limiting the rate of spread of infectious diseases like COVID-19. Several solutions based on the exchange of random, anonymous tokens between users’ mobile devices via Bluetooth, or using users’ location traces have been proposed and deployed. These solutions require the user

Contact tracing has been shown to be effective in limiting the rate of spread of infectious diseases like COVID-19. Several solutions based on the exchange of random, anonymous tokens between users’ mobile devices via Bluetooth, or using users’ location traces have been proposed and deployed. These solutions require the user device to download the tokens (or traces) of infected users from the server. The user tokens are matched with infected users’ tokens to determine an exposure event. These solutions are vulnerable to a range of security and privacy issues, and require large downloads, thus warranting the need for an efficient protocol with strong privacy guarantees. Moreover, these solutions are based solely on proximity between user devices, while COVID-19 can spread from common surfaces as well. Knowledge of areas with a large number of visits by infected users (hotspots) can help inform users to avoid those areas and thereby reduce surface transmission. This thesis proposes a strong secure system for contact tracing and hotspots histogram computation. The contact tracing protocol uses a combination of Bluetooth Low Energy and Global Positioning System (GPS) location data. A novel and deployment-friendly Delegated Private Set Intersection Cardinality protocol is proposed for efficient and secure server aided matching of tokens. Secure aggregation techniques are used to allow the server to learn areas of high risk from location traces of diagnosed users, without revealing any individual user’s location history.
ContributorsSurana, Chetan (Author) / Trieu, Ni (Thesis advisor) / Sankar, Lalitha (Committee member) / Berisha, Visar (Committee member) / Zhao, Ming (Committee member) / Arizona State University (Publisher)
Created2021