This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154791-Thumbnail Image.png
Description
One of the most common errors developers make is to provide incorrect string

identifiers across the HTML5-JavaScript-CSS3 stack. The existing literature shows that a

significant percentage of defects observed in real-world codebases belong to this

category. Existing work focuses on semantic static analysis, while this thesis attempts to

tackle the challenges that can be

One of the most common errors developers make is to provide incorrect string

identifiers across the HTML5-JavaScript-CSS3 stack. The existing literature shows that a

significant percentage of defects observed in real-world codebases belong to this

category. Existing work focuses on semantic static analysis, while this thesis attempts to

tackle the challenges that can be solved using syntactic static analysis. This thesis

proposes a tool for quickly identifying defects at the time of injection due to

dependencies between HTML5, JavaScript, and CSS3, specifically in syntactic errors in

string identifiers. The proposed solution reduces the delta (time) between defect injection

and defect discovery with the use of a dedicated just-in-time syntactic string identifier

resolution tool. The solution focuses on modeling the nature of syntactic dependencies

across the stack, and providing a tool that helps developers discover such dependencies.

This thesis reports on an empirical study of the tool usage by developers in a realistic

scenario, with the focus on defect injection and defect discovery times of defects of this

nature (syntactic errors in string identifiers) with and without the use of the proposed

tool. Further, the tool was validated against a set of real-world codebases to analyze the

significance of these defects.
ContributorsKalsi, Manit Singh (Author) / Gary, Kevin A (Thesis advisor) / Lindquist, Timothy E (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2016
155706-Thumbnail Image.png
Description
The volume and frequency of cyber attacks have exploded in recent years. Organizations subscribe to multiple threat intelligence feeds to increase their knowledge base and better equip their security teams with the latest information in threat intelligence domain. Though such subscriptions add intelligence and can help in taking more informed

The volume and frequency of cyber attacks have exploded in recent years. Organizations subscribe to multiple threat intelligence feeds to increase their knowledge base and better equip their security teams with the latest information in threat intelligence domain. Though such subscriptions add intelligence and can help in taking more informed decisions, organizations have to put considerable efforts in facilitating and analyzing a large number of threat indicators. This problem worsens further, due to a large number of false positives and irrelevant events detected as threat indicators by existing threat feed sources. It is often neither practical nor cost-effective to analyze every single alert considering the staggering volume of indicators. The very reason motivates to solve the overcrowded threat indicators problem by prioritizing and filtering them.

To overcome above issue, I explain the necessity of determining how likely a reported indicator is malicious given the evidence and prioritizing it based on such determination. Confidence Score Measurement system (CSM) introduces the concept of confidence score, where it assigns a score of being malicious to a threat indicator based on the evaluation of different threat intelligence systems. An indicator propagates maliciousness to adjacent indicators based on relationship determined from behavior of an indicator. The propagation algorithm derives final confidence to determine overall maliciousness of the threat indicator. CSM can prioritize the indicators based on confidence score; however, an analyst may not be interested in the entire result set, so CSM narrows down the results based on the analyst-driven input. To this end, CSM introduces the concept of relevance score, where it combines the confidence score with analyst-driven search by applying full-text search techniques. It prioritizes the results based on relevance score to provide meaningful results to the analyst. The analysis shows the propagation algorithm of CSM linearly scales with larger datasets and achieves 92% accuracy in determining threat indicators. The evaluation of the result demonstrates the effectiveness and practicality of the approach.
ContributorsModi, Ajay (Author) / Ahn, Gail-Joon (Thesis advisor) / Zhao, Ziming (Committee member) / Doupe, Adam (Committee member) / Arizona State University (Publisher)
Created2017