This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154721-Thumbnail Image.png
Description
Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked devices. Therefore, different audio output platforms ranging from multispeaker high-end

Several music players have evolved in multi-dimensional and surround sound systems. The audio players are implemented as software applications for different audio hardware systems. Digital formats and wireless networks allow for audio content to be readily accessible on smart networked devices. Therefore, different audio output platforms ranging from multispeaker high-end surround systems to single unit Bluetooth speakers have been developed. A large body of research has been carried out in audio processing, beamforming, sound fields etc. and new formats are developed to create realistic audio experiences.

An emerging trend is seen towards high definition AV systems, virtual reality gears as well as gaming applications with multidimensional audio. Next generation media technology is concentrating around Virtual reality experience and devices. It has applications not only in gaming but all other fields including medical, entertainment, engineering, and education. All such systems also require realistic audio corresponding with the visuals.

In the project presented in this thesis, a new portable audio hardware system is designed and developed along with a dedicated mobile android application to render immersive surround sound experiences with real-time audio effects. The tablet and mobile phone allow the user to control or “play” with sound directionality and implement various audio effects including sound rotation, spatialization, and other immersive experiences. The thesis describes the hardware and software design, provides the theory of the sound effects, and presents demonstrations of the sound application that was created.
ContributorsDharmadhikari, Chinmay (Author) / Spanias, Andreas (Thesis advisor) / Turaga, Pavan (Committee member) / Ingalls, Todd (Committee member) / Arizona State University (Publisher)
Created2016
154572-Thumbnail Image.png
Description
This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but

This work examines two main areas in model-based time-varying signal processing with emphasis in speech processing applications. The first area concentrates on improving speech intelligibility and on increasing the proposed methodologies application for clinical practice in speech-language pathology. The second area concentrates on signal expansions matched to physical-based models but without requiring independent basis functions; the significance of this work is demonstrated with speech vowels.

A fully automated Vowel Space Area (VSA) computation method is proposed that can be applied to any type of speech. It is shown that the VSA provides an efficient and reliable measure and is correlated to speech intelligibility. A clinical tool that incorporates the automated VSA was proposed for evaluation and treatment to be used by speech language pathologists. Two exploratory studies are performed using two databases by analyzing mean formant trajectories in healthy speech for a wide range of speakers, dialects, and coarticulation contexts. It is shown that phonemes crowded in formant space can often have distinct trajectories, possibly due to accurate perception.

A theory for analyzing time-varying signals models with amplitude modulation and frequency modulation is developed. Examples are provided that demonstrate other possible signal model decompositions with independent basis functions and corresponding physical interpretations. The Hilbert transform (HT) and the use of the analytic form of a signal are motivated, and a proof is provided to show that a signal can still preserve desirable mathematical properties without the use of the HT. A visualization of the Hilbert spectrum is proposed to aid in the interpretation. A signal demodulation is proposed and used to develop a modified Empirical Mode Decomposition (EMD) algorithm.
ContributorsSandoval, Steven, 1984- (Author) / Papandreou-Suppappola, Antonia (Thesis advisor) / Liss, Julie M (Committee member) / Turaga, Pavan (Committee member) / Kovvali, Narayan (Committee member) / Arizona State University (Publisher)
Created2016