This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154547-Thumbnail Image.png
Description
Pyrite is a 0.95 eV bandgap semiconductor which is purported to have great potential in widespread, low–cost photovoltaic cells. A thorough material selection process was used in the design of a pyrite sequential vapor deposition chamber aimed at reducing and possibly eliminating contamination during thin film growth. The design process

Pyrite is a 0.95 eV bandgap semiconductor which is purported to have great potential in widespread, low–cost photovoltaic cells. A thorough material selection process was used in the design of a pyrite sequential vapor deposition chamber aimed at reducing and possibly eliminating contamination during thin film growth. The design process focused on identifying materials that do not produce volatile components when exposed to high temperatures and high sulfur pressures. Once the materials were identified and design was completed, the ultra–high vacuum growth system was constructed and tested.

Pyrite thin films were deposited using the upgraded sequential vapor deposition chamber by varying the substrate temperature from 250°C to 420°C during deposition, keeping sulfur pressure constant at 1 Torr. Secondary Ion Mass Spectrometry (SIMS) results showed that all contaminants in the films were reduced in concentration by orders of magnitude from those grown with the previous system. Characterization techniques of Rutherford Back–scattering Spectrometry (RBS), X–Ray Diffraction (XRD), Raman Spectroscopy, Optical Profilometry and UV/Vis/Near–IR Spectroscopy were performed on the deposited thin films. The results indicate that stoichiometric ratio of S:Fe, structural–quality (epitaxy), optical roughness and percentage of pyrite in the deposited thin films improve with increase in deposition temperature. A Tauc plot of the optical measurements indicates that the pyrite thin films have a bandgap of 0.94 eV.
ContributorsWalimbe, Aditya (Author) / Newman, Nathan (Thesis advisor) / Alford, Terry (Committee member) / Singh, Rakesh (Committee member) / Arizona State University (Publisher)
Created2016
154499-Thumbnail Image.png
Description
White organic light emitting diodes (WOLEDs) are currently being developed as the next generation of solid state lighting sources. Although, there has been considerable improvements in device efficiency from the early days up until now, there are still major drawbacks for the implementation of WOLEDs to commercial markets. These drawbacks

White organic light emitting diodes (WOLEDs) are currently being developed as the next generation of solid state lighting sources. Although, there has been considerable improvements in device efficiency from the early days up until now, there are still major drawbacks for the implementation of WOLEDs to commercial markets. These drawbacks include short lifetimes associated with highly efficient and easier to fabricate device structures. Platinum (II) complexes are been explored as emitters for single emissive layer WOLEDs, due to their higher efficiencies and stability in device configurations. These properties have been attributed to their square planar nature. Tetradentate platinum (II) complexes in particular have been shown to be more rigid and thus more stable than their other multidentate counterparts. This thesis aims to explore the different pathways via molecular design of tetradentate platinum II complexes and in particular the percipient engineering of a highly efficient and stable device structure. Previous works have been able to obtain either highly efficient devices or stable devices in different device configurations. In this work, we demonstrate a device structure employing Pt2O2 as the emitter using mCBP as a host with EQE of above 20% and lifetime values (LT80) exceeding 6000hours at practical luminance of 100cd/m2. These results open up the pathway towards the commercialization of white organic light emitting diodes as a solid state lighting source.
ContributorsOloye, Temidayo Abiola (Author) / Li, Jian (Thesis advisor) / Alford, Terry (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2016