This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

154319-Thumbnail Image.png
Description
In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and location detection problems are considered.

In location estimation problems, sensor nodes at known locations, called anchors, transmit signals to sensor

In many applications, measured sensor data is meaningful only when the location of sensors is accurately known. Therefore, the localization accuracy is crucial. In this dissertation, both location estimation and location detection problems are considered.

In location estimation problems, sensor nodes at known locations, called anchors, transmit signals to sensor nodes at unknown locations, called nodes, and use these transmissions to estimate the location of the nodes. Specifically, the location estimation in the presence of fading channels using time of arrival (TOA) measurements with narrowband communication signals is considered. Meanwhile, the Cramer-Rao lower bound (CRLB) for localization error under different assumptions is derived. Also, maximum likelihood estimators (MLEs) under these assumptions are derived.

In large WSNs, distributed location estimation algorithms are more efficient than centralized algorithms. A sequential localization scheme, which is one of distributed location estimation algorithms, is considered. Also, different localization methods, such as TOA, received signal strength (RSS), time difference of arrival (TDOA), direction of arrival (DOA), and large aperture array (LAA) are compared under different signal-to-noise ratio (SNR) conditions. Simulation results show that DOA is the preferred scheme at the low SNR regime and the LAA localization algorithm provides better performance for network discovery at high SNRs. Meanwhile, the CRLB for the localization error using the TOA method is also derived.

A distributed location detection scheme, which allows each anchor to make a decision as to whether a node is active or not is proposed. Once an anchor makes a decision, a bit is transmitted to a fusion center (FC). The fusion center combines all the decisions and uses a design parameter $K$ to make the final decision. Three scenarios are considered in this dissertation. Firstly, location detection at a known location is considered. Secondly, detecting a node in a known region is considered. Thirdly, location detection in the presence of fading is considered. The optimal thresholds are derived and the total probability of false alarm and detection under different scenarios are derived.
ContributorsZhang, Xue (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Berisha, Visar (Committee member) / Arizona State University (Publisher)
Created2016
158175-Thumbnail Image.png
Description
Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA) is employed to protect patients and provide time for surgeons

Aortic aneurysms and dissections are life threatening conditions addressed by replacing damaged sections of the aorta. Blood circulation must be halted to facilitate repairs. Ischemia places the body, especially the brain, at risk of damage. Deep hypothermia circulatory arrest (DHCA) is employed to protect patients and provide time for surgeons to complete repairs on the basis that reducing body temperature suppresses the metabolic rate. Supplementary surgical techniques can be employed to reinforce the brain's protection and increase the duration circulation can be suspended. Even then, protection is not completely guaranteed though. A medical condition that can arise early in recovery is postoperative delirium, which is correlated with poor long term outcome. This study develops a methodology to intraoperatively monitor neurophysiology through electroencephalography (EEG) and anticipate postoperative delirium. The earliest opportunity to detect occurrences of complications through EEG is immediately following DHCA during warming. The first observable electrophysiological activity after being completely suppressed is a phenomenon known as burst suppression, which is related to the brain's metabolic state and recovery of nominal neurological function. A metric termed burst suppression duty cycle (BSDC) is developed to characterize the changing electrophysiological dynamics. Predictions of postoperative delirium incidences are made by identifying deviations in the way these dynamics evolve. Sixteen cases are examined in this study. Accurate predictions can be made, where on average 89.74% of cases are correctly classified when burst suppression concludes and 78.10% when burst suppression begins. The best case receiver operating characteristic curve has an area under its convex hull of 0.8988, whereas the worst case area under the hull is 0.7889. These results demonstrate the feasibility of monitoring BSDC to anticipate postoperative delirium during burst suppression. They also motivate a further analysis on identifying footprints of causal mechanisms of neural injury within BSDC. Being able to raise warning signs of postoperative delirium early provides an opportunity to intervene and potentially avert neurological complications. Doing so would improve the success rate and quality of life after surgery.
ContributorsMa, Owen (Author) / Bliss, Daniel W (Thesis advisor) / Berisha, Visar (Committee member) / Kosut, Oliver (Committee member) / Brewer, Gene (Committee member) / Arizona State University (Publisher)
Created2020