This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156799-Thumbnail Image.png
Description
Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks

Cyber-systems and networks are the target of different types of cyber-threats and attacks, which are becoming more common, sophisticated, and damaging. Those attacks can vary in the way they are performed. However, there are similar strategies

and tactics often used because they are time-proven to be effective. The motivations behind cyber-attacks play an important role in designating how attackers plan and proceed to achieve their goals. Generally, there are three categories of motivation

are: political, economical, and socio-cultural motivations. These indicate that to defend against possible attacks in an enterprise environment, it is necessary to consider what makes such an enterprise environment a target. That said, we can understand

what threats to consider and how to deploy the right defense system. In other words, detecting an attack depends on the defenders having a clear understanding of why they become targets and what possible attacks they should expect. For instance,

attackers may preform Denial of Service (DoS), or even worse Distributed Denial of Service (DDoS), with intention to cause damage to targeted organizations and prevent legitimate users from accessing their services. However, in some cases, attackers are very skilled and try to hide in a system undetected for a long period of time with the incentive to steal and collect data rather than causing damages.

Nowadays, not only the variety of attack types and the way they are launched are important. However, advancement in technology is another factor to consider. Over the last decades, we have experienced various new technologies. Obviously, in the beginning, new technologies will have their own limitations before they stand out. There are a number of related technical areas whose understanding is still less than satisfactory, and in which long-term research is needed. On the other hand, these new technologies can boost the advancement of deploying security solutions and countermeasures when they are carefully adapted. That said, Software Defined Networking i(SDN), its related security threats and solutions, and its adaption in enterprise environments bring us new chances to enhance our security solutions. To reach the optimal level of deploying SDN technology in enterprise environments, it is important to consider re-evaluating current deployed security solutions in traditional networks before deploying them to SDN-based infrastructures. Although DDoS attacks are a bit sinister, there are other types of cyber-threats that are very harmful, sophisticated, and intelligent. Thus, current security defense solutions to detect DDoS cannot detect them. These kinds of attacks are complex, persistent, and stealthy, also referred to Advanced Persistent Threats (APTs) which often leverage the bot control and remotely access valuable information. APT uses multiple stages to break into a network. APT is a sort of unseen, continuous and long-term penetrative network and attackers can bypass the existing security detection systems. It can modify and steal the sensitive data as well as specifically cause physical damage the target system. In this dissertation, two cyber-attack motivations are considered: sabotage, where the motive is the destruction; and information theft, where attackers aim to acquire invaluable information (customer info, business information, etc). I deal with two types of attacks (DDoS attacks and APT attacks) where DDoS attacks are classified under sabotage motivation category, and the APT attacks are classified under information theft motivation category. To detect and mitigate each of these attacks, I utilize the ease of programmability in SDN and its great platform for implementation, dynamic topology changes, decentralized network management, and ease of deploying security countermeasures.
ContributorsAlshamrani, Adel (Author) / Huang, Dijiang (Thesis advisor) / Doupe, Adam (Committee member) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2018
154187-Thumbnail Image.png
Description
Widespread adoption of smartphone based Mobile Medical Apps (MMAs) is opening new avenues for innovation, bringing MMAs to the forefront of low cost healthcare delivery. These apps often control human physiology and work on sensitive data. Thus it is necessary to have evidences of their trustworthiness i.e. maintaining privacy of

Widespread adoption of smartphone based Mobile Medical Apps (MMAs) is opening new avenues for innovation, bringing MMAs to the forefront of low cost healthcare delivery. These apps often control human physiology and work on sensitive data. Thus it is necessary to have evidences of their trustworthiness i.e. maintaining privacy of health data, long term operation of wearable sensors and ensuring no harm to the user before actual marketing. Traditionally, clinical studies are used to validate the trustworthiness of medical systems. However, they can take long time and could potentially harm the user. Such evidences can be generated using simulations and mathematical analysis. These methods involve estimating the MMA interactions with human physiology. However, the nonlinear nature of human physiology makes the estimation challenging.

This research analyzes and develops MMA software while considering its interactions with human physiology to assure trustworthiness. A novel app development methodology is used to objectively evaluate trustworthiness of a MMA by generating evidences using automatic techniques. It involves developing the Health-Dev β tool to generate a) evidences of trustworthiness of MMAs and b) requirements assured code generation for vulnerable components of the MMA without hindering the app development process. In this method, all requests from MMAs pass through a trustworthy entity, Trustworthy Data Manager which checks if the app request satisfies the MMA requirements. This method is intended to expedite the design to marketing process of MMAs. The objectives of this research is to develop models, tools and theory for evidence generation and can be divided into the following themes:

• Sustainable design configuration estimation of MMAs: Developing an optimization framework which can generate sustainable and safe sensor configuration while considering interactions of the MMA with the environment.

• Evidence generation using simulation and formal methods: Developing models and tools to verify safety properties of the MMA design to ensure no harm to the human physiology.

• Automatic code generation for MMAs: Investigating methods for automatically

• Performance analysis of trustworthy data manager: Evaluating response time generating trustworthy software for vulnerable components of a MMA and evidences.performance of trustworthy data manager under interactions from non-MMA smartphone apps.
ContributorsBagade, Priyanka (Author) / Gupta, Sandeep K. S. (Thesis advisor) / Wu, Carole-Jean (Committee member) / Doupe, Adam (Committee member) / Zhang, Yi (Committee member) / Arizona State University (Publisher)
Created2015