This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
ContributorsMa, Xiaoli (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015
154238-Thumbnail Image.png
Description
ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2.

ABSTRACT



Large-pore metal-organic framework (MOF) membranes offer potential in a number of gas and liquid separations due to their wide and selective adsorption capacities. A key characteristic of a number of MOF and zeolitic imidazolate framework (ZIF) membranes is their highly selective adsorption capacities for CO2. These membranes offer very tangible potential to separate CO2 in a wide array of industrially relevant separation processes, such as the separation from CO2 in flue gas emissions, as well as the sweetening of methane.

By virtue of this, the purpose of this dissertation is to synthesize and characterize two linear large-pore MOF membranes, MOF-5 and ZIF-68, and to study their gas separation properties in binary mixtures of CO¬2/N2 and CO2/CH4. The three main objectives researched are as follows. The first is to study the pervaporation behavior and stability of MOF-5; this is imperative because although MOF-5 exhibits desirable adsorption and separation characteristics, it is very unstable in atmospheric conditions. In determining its stability and behavior in pervaporation, this material can be utilized in conditions wherein atmospheric levels of moisture can be avoided. The second objective is to synthesize, optimize and characterize a linear, more stable MOF membrane, ZIF-68. The final objective is to study in tandem the high-pressure gas separation behavior of MOF-5 and ZIF-68 in binary gas systems of both CO2/N2 and CO2/CH4.

Continuous ZIF-68 membranes were synthesized via the reactive seeding method and the modified reactive seeding method. These membranes, as with the MOF-5 membranes synthesized herein, both showed adherence to Knudsen diffusion, indicating limited defects. Organic solvent experiments indicated that MOF-5 and ZIF-68 were stable in a variety of organic solvents, but both showed reductions in permeation flux of the tested molecules. These reductions were attributed to fouling and found to be cumulative up until a saturation of available bonding sites for molecules was reached and stable pervaporation permeances were reached for both. Gas separation behavior for MOF-5 showed direct dependence on the CO2 partial pressure and the overall feed pressure, while ZIF-68 did not show similar behavior. Differences in separation behavior are attributable to orientation of the ZIF-68 membranes.
ContributorsKasik, Alexandra Marie (Author) / Lin, Jerry (Thesis advisor) / Tasooji, Amaneh (Committee member) / Alford, Terry (Committee member) / Arizona State University (Publisher)
Created2015
158017-Thumbnail Image.png
Description
Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or

Mixed-ionic electronic conducting (MIEC) oxides have drawn much attention from researchers because of their potential in high temperature separation processes. Among many materials available, perovskite type and fluorite type oxides are the most studied for their excellent oxygen ion transport property. These oxides not only can be oxygen adsorbent or O2-permeable membranes themselves, but also can be incorporated with molten carbonate to form dual-phase membranes for CO2 separation.

Oxygen sorption/desorption properties of perovskite oxides with and without oxygen vacancy were investigated first by thermogravimetric analysis (TGA) and fixed-bed experiments. The oxide with unique disorder-order phase transition during desorption exhibited an enhanced oxygen desorption rate during the TGA measurement but not in fixed-bed demonstrations. The difference in oxygen desorption rate is due to much higher oxygen partial pressure surrounding the sorbent during the fixed-bed oxygen desorption process, as revealed by X-ray diffraction (XRD) patterns of rapidly quenched samples.

Research on using perovskite oxides as CO2-permeable dual-phase membranes was subsequently conducted. Two CO2-resistant MIEC perovskite ceramics, Pr0.6Sr0.4Co0.2Fe0.8 O3-δ (PSCF) and SrFe0.9Ta0.1O3-δ (SFT) were chosen as support materials for membrane synthesis. PSCF-molten carbonate (MC) and SFT-MC membranes were prepared for CO2-O2 counter-permeation. The geometric factors for the carbonate phase and ceramic phase were used to calculate the effective carbonate and oxygen ionic conductivity in the carbonate and ceramic phase. When tested in CO2-O2 counter-permeation set-up, CO2 flux showed negligible change, but O2 flux decreased by 10-32% compared with single-component permeation. With CO2 counter-permeation, the total oxygen permeation flux is higher than that without counter-permeation.

A new concept of CO2-permselective membrane reactor for hydrogen production via steam reforming of methane (SRM) was demonstrated. The results of SRM in the membrane reactor confirm that in-situ CO2 removal effectively promotes water-gas shift conversion and thus enhances hydrogen yield. A modeling study was also conducted to assess the performance of the membrane reactor in high-pressure feed/vacuum sweep conditions, which were not carried out due to limitations in current membrane testing set-up. When 5 atm feed pressure and 10-3 atm sweep pressure were applied, the membrane reactor can produce over 99% hydrogen stream in simulation.
ContributorsWu, Han-Chun (Author) / Lin, Jerry Y.S. (Thesis advisor) / Deng, Shuguang (Committee member) / Jiao, Yang (Committee member) / Emady, Heather (Committee member) / Muhich, Christopherq (Committee member) / Arizona State University (Publisher)
Created2020