This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153270-Thumbnail Image.png
Description
Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer

Fisheye cameras are special cameras that have a much larger field of view compared to

conventional cameras. The large field of view comes at a price of non-linear distortions

introduced near the boundaries of the images captured by such cameras. Despite this

drawback, they are being used increasingly in many applications of computer vision,

robotics, reconnaissance, astrophotography, surveillance and automotive applications.

The images captured from such cameras can be corrected for their distortion if the

cameras are calibrated and the distortion function is determined. Calibration also allows

fisheye cameras to be used in tasks involving metric scene measurement, metric

scene reconstruction and other simultaneous localization and mapping (SLAM) algorithms.

This thesis presents a calibration toolbox (FisheyeCDC Toolbox) that implements a collection of some of the most widely used techniques for calibration of fisheye cameras under one package. This enables an inexperienced user to calibrate his/her own camera without the need for a theoretical understanding about computer vision and camera calibration. This thesis also explores some of the applications of calibration such as distortion correction and 3D reconstruction.
ContributorsKashyap Takmul Purushothama Raju, Vinay (Author) / Karam, Lina (Thesis advisor) / Turaga, Pavan (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
153249-Thumbnail Image.png
Description
In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the

In this thesis we consider the problem of facial expression recognition (FER) from video sequences. Our method is based on subspace representations and Grassmann manifold based learning. We use Local Binary Pattern (LBP) at the frame level for representing the facial features. Next we develop a model to represent the video sequence in a lower dimensional expression subspace and also as a linear dynamical system using Autoregressive Moving Average (ARMA) model. As these subspaces lie on Grassmann space, we use Grassmann manifold based learning techniques such as kernel Fisher Discriminant Analysis with Grassmann kernels for classification. We consider six expressions namely, Angry (AN), Disgust (Di), Fear (Fe), Happy (Ha), Sadness (Sa) and Surprise (Su) for classification. We perform experiments on extended Cohn-Kanade (CK+) facial expression database to evaluate the expression recognition performance. Our method demonstrates good expression recognition performance outperforming other state of the art FER algorithms. We achieve an average recognition accuracy of 97.41% using a method based on expression subspace, kernel-FDA and Support Vector Machines (SVM) classifier. By using a simpler classifier, 1-Nearest Neighbor (1-NN) along with kernel-FDA, we achieve a recognition accuracy of 97.09%. We find that to process a group of 19 frames in a video sequence, LBP feature extraction requires majority of computation time (97 %) which is about 1.662 seconds on the Intel Core i3, dual core platform. However when only 3 frames (onset, middle and peak) of a video sequence are used, the computational complexity is reduced by about 83.75 % to 260 milliseconds at the expense of drop in the recognition accuracy to 92.88 %.
ContributorsYellamraju, Anirudh (Author) / Chakrabarti, Chaitali (Thesis advisor) / Turaga, Pavan (Thesis advisor) / Karam, Lina (Committee member) / Arizona State University (Publisher)
Created2014