This collection includes both ASU Theses and Dissertations, submitted by graduate students, and the Barrett, Honors College theses submitted by undergraduate students. 

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153096-Thumbnail Image.png
Description
Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for

Control engineering offers a systematic and efficient approach to optimizing the effectiveness of individually tailored treatment and prevention policies, also known as adaptive or ``just-in-time'' behavioral interventions. These types of interventions represent promising strategies for addressing many significant public health concerns. This dissertation explores the development of decision algorithms for adaptive sequential behavioral interventions using dynamical systems modeling, control engineering principles and formal optimization methods. A novel gestational weight gain (GWG) intervention involving multiple intervention components and featuring a pre-defined, clinically relevant set of sequence rules serves as an excellent example of a sequential behavioral intervention; it is examined in detail in this research.

 

A comprehensive dynamical systems model for the GWG behavioral interventions is developed, which demonstrates how to integrate a mechanistic energy balance model with dynamical formulations of behavioral models, such as the Theory of Planned Behavior and self-regulation. Self-regulation is further improved with different advanced controller formulations. These model-based controller approaches enable the user to have significant flexibility in describing a participant's self-regulatory behavior through the tuning of controller adjustable parameters. The dynamic simulation model demonstrates proof of concept for how self-regulation and adaptive interventions influence GWG, how intra-individual and inter-individual variability play a critical role in determining intervention outcomes, and the evaluation of decision rules.

 

Furthermore, a novel intervention decision paradigm using Hybrid Model Predictive Control framework is developed to generate sequential decision policies in the closed-loop. Clinical considerations are systematically taken into account through a user-specified dosage sequence table corresponding to the sequence rules, constraints enforcing the adjustment of one input at a time, and a switching time strategy accounting for the difference in frequency between intervention decision points and sampling intervals. Simulation studies illustrate the potential usefulness of the intervention framework.

The final part of the dissertation presents a model scheduling strategy relying on gain-scheduling to address nonlinearities in the model, and a cascade filter design for dual-rate control system is introduced to address scenarios with variable sampling rates. These extensions are important for addressing real-life scenarios in the GWG intervention.
ContributorsDong, Yuwen (Author) / Rivera, Daniel E (Thesis advisor) / Dai, Lenore (Committee member) / Forzani, Erica (Committee member) / Rege, Kaushal (Committee member) / Si, Jennie (Committee member) / Arizona State University (Publisher)
Created2014
161310-Thumbnail Image.png
Description
Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical applications including aircraft, rotorcraft, and wind turbines. Any accidental failure

Engineering materials and structures undergo a wide variety of multiaxial fatigue loading conditions during their service life. Some of the most complex multiaxial loading scenarios include proportional/non-proportional loading, mix-mode loading, overload/underload, etc. Such loadings are often experienced in many critical applications including aircraft, rotorcraft, and wind turbines. Any accidental failure of these structures during their service life can lead to catastrophic damage to life, property, and environment. All fatigue failure begins with the nucleation of a small crack, followed by crack growth, and ultimately the occurrence of final failure; however, the mechanisms governing the crack nucleation and the crack propagation behavior depend on the nature of fatigue loading and microstructure of the material. In general, ductile materials witness multiple nucleation sites leading to its failure; however, high strength material fails from the nucleation of a single dominant crack. Crack propagation, on the other hand, is governed by various competing mechanisms, which can act either ahead of the crack tip or in the wake region of the crack. Depending upon the magnitude of load, overload/underload, mode-mixity, and microstructure, dominant governing mechanisms may include: crack tip blunting; crack deflection, branching and secondary cracking; strain hardening; residual compressive stresses; plasticity-induced closure, etc. Therefore, it is essential to investigate the mechanisms governing fatigue failure of structural components under such complex multiaxial loading conditions in order to provide a reliable estimation of useful life. The research presented in this dissertation provides the foundation for a comprehensive understanding of fatigue damage in AA 7075 subjected to a range of loading conditions. A series of fatigue tests were conducted on specially designed specimens under different forms of multiaxial loading, which was followed by fracture-surface analysis in order to identify the governing micromechanisms and correlate them with macroscopic fatigue damage behavior. An empirical model was also developed to predict the crack growth rate trend under mode II overloads in an otherwise constant amplitude biaxial loading. The model parameters were calculated using the shape and the size of the plastic zone ahead of the crack tip, and the degree of material hardening within the overload plastic zone. The data obtained from the model showed a good correlation with the experimental values for crack growth rate in the transient region.
ContributorsSingh, Abhay Kumar (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Fard, Masoud Y (Committee member) / Arizona State University (Publisher)
Created2021