This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 51 - 60 of 14,026
151691-Thumbnail Image.png
Description
Set in the former Yugoslavia, contemporary Bosnia and Herzegovina, and Midwest America, the collection of short stories follows the complicated trajectory of war-survivor to refugee and, then, immigrant. These stories---about religious prisoners who are not at all religious, about young, philosophizing boys tempting the bullets of snipers, about men retracing

Set in the former Yugoslavia, contemporary Bosnia and Herzegovina, and Midwest America, the collection of short stories follows the complicated trajectory of war-survivor to refugee and, then, immigrant. These stories---about religious prisoners who are not at all religious, about young, philosophizing boys tempting the bullets of snipers, about men retracing their fathers' steps over bridges that no longer exist---grapple with memory, imagination, and the nature of art, and explore the notion of writer as witness.
ContributorsHusić, Vedran (Author) / Pritchard, Melissa (Thesis advisor) / Ison, Tara (Committee member) / Turchi, Peter (Committee member) / Arizona State University (Publisher)
Created2013
151692-Thumbnail Image.png
Description
A new method for generating artificial fingerprints is presented. Due to their uniqueness and durability, fingerprints are invaluable tools for identification for law enforcement and other purposes. Large databases of varied, realistic artificial fingerprints are needed to aid in the development and evaluation of automated systems for criminal or biometric

A new method for generating artificial fingerprints is presented. Due to their uniqueness and durability, fingerprints are invaluable tools for identification for law enforcement and other purposes. Large databases of varied, realistic artificial fingerprints are needed to aid in the development and evaluation of automated systems for criminal or biometric identification. Further, an effective method for simulating fingerprints may provide insight into the biological processes underlying print formation. However, previous attempts at simulating prints have been unsatisfactory. We approach the problem of creating artificial prints through a pattern formation model. We demonstrate how it is possible to generate distinctive patterns that strongly resemble real fingerprints via a system of partial differential equations with a suitable domain and initial conditions.
ContributorsColtin, Kevin (Author) / Armbruster, Hans D (Thesis advisor) / Platte, Rodrigo B (Committee member) / Welfert, Bruno D (Committee member) / Arizona State University (Publisher)
Created2013
151693-Thumbnail Image.png
Description
The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules

The principle of Darwinian evolution has been applied in the laboratory to nucleic acid molecules since 1990, and led to the emergence of in vitro evolution technique. The methodology of in vitro evolution surveys a large number of different molecules simultaneously for a pre-defined chemical property, and enrich for molecules with the particular property. DNA and RNA sequences with versatile functions have been identified by in vitro selection experiments, but many basic questions remain to be answered about how these molecules achieve their functions. This dissertation first focuses on addressing a fundamental question regarding the molecular recognition properties of in vitro selected DNA sequences, namely whether negatively charged DNA sequences can be evolved to bind alkaline proteins with high specificity. We showed that DNA binders could be made, through carefully designed stringent in vitro selection, to discriminate different alkaline proteins. The focus of this dissertation is then shifted to in vitro evolution of an artificial genetic polymer called threose nucleic acid (TNA). TNA has been considered a potential RNA progenitor during early evolution of life on Earth. However, further experimental evidence to support TNA as a primordial genetic material is lacking. In this dissertation we demonstrated the capacity of TNA to form stable tertiary structure with specific ligand binding property, which suggests a possible role of TNA as a pre-RNA genetic polymer. Additionally, we discussed the challenges in in vitro evolution for TNA enzymes and developed the necessary methodology for future TNA enzyme evolution.
ContributorsYu, Hanyang (Author) / Chaput, John C (Thesis advisor) / Chen, Julian (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2013
151694-Thumbnail Image.png
Description
This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts

This document is intended to show the various kinds of stylistically appropriate melodic and rhythmic ornamentation that can be used in the improvisation of the Sarabandes by J.S. Bach. Traditional editions of Bach's and other Baroque-era keyboard works have reflected evolving historical trends. The historical performance movement and other attempts to "clean up" pre-1950s romanticized performances have greatly limited the freedom and experimentation that was the original intention of these dances. Prior to this study, few ornamented editions of these works have been published. Although traditional practices do not necessarily encourage classical improvisation in performance I argue that manipulation of the melodic and rhythmic layers over the established harmonic progressions will not only provide diversity within the individual dance movements, but also further engage the ears of the performer and listener which encourages further creative exploration. I will focus this study on the ornamentation of all six Sarabandes from J.S. Bach's French Suites and show how various types of melodic and rhythmic variation can provide aurally pleasing alternatives to the composed score without disrupting the harmonic fluency. The author intends this document to be used as a pedagogical tool and the fully ornamented Sarabandes from J.S. Bach's French Suites are included with this document.
ContributorsOakley, Ashley (Author) / Meir, Baruch (Thesis advisor) / Campbell, Andrew (Committee member) / Norton, Kay (Committee member) / Pagano, Caio (Committee member) / Ryan, Russell (Committee member) / Arizona State University (Publisher)
Created2013
151695-Thumbnail Image.png
Description
The objective of this study was to examine the potential effects of long term hormone replacement therapy on cardiovascular autonomic nervous system responses to laboratory social stressors. The participants were 38 postmenopausal women, 18 using estrogen and progesterone hormone replacement therapy for at least 2 years and 20 control participants

The objective of this study was to examine the potential effects of long term hormone replacement therapy on cardiovascular autonomic nervous system responses to laboratory social stressors. The participants were 38 postmenopausal women, 18 using estrogen and progesterone hormone replacement therapy for at least 2 years and 20 control participants without hormone replacement therapy. All women completed orthostasis (standing and sitting), then speech and math tasks (speech and math were counterbalanced). Cardiovascular measures of sympathetic nervous system (pre-ejection period, PEP) and parasympathetic nervous system (respiratory sinus arrhythmia, RSA) along with heart rate were collected throughout all periods (baseline, orthostasis, and stressors). For orthostasis, results of mixed analyses of variance (ANOVAs) showed expected period effects for heart rate, RSA and PEP, but no group or group by period interaction was significant. For the psychological stressors, period main effects were significant for all three variables, suggesting that the tasks were effective at inducing stress. Also, there was a significant interaction between group and period for RSA, demonstrated by greater decrease during the psychological stressor period in the group using HRT. The interactions between group and period for heart rate and PEP were non-significant. These findings support the notion that HRT may slow age-related decreases in parasympathetic responsiveness. Furthermore, changes in vagal reactivity in relation to use of HRT appear to occur within mechanisms involving response and coping with psychological stressors, rather than mechanisms that accommodate basic physiological task such as orthostasis.
ContributorsValancova-Acevedo, Katarina (Author) / Burleson, Mary H. (Thesis advisor) / Roberts, Nicole A. (Committee member) / Newman, Matt L. (Committee member) / Arizona State University (Publisher)
Created2013
151696-Thumbnail Image.png
Description
The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing

The temperature of a planet's surface depends on numerous physical factors, including thermal inertia, albedo and the degree of insolation. Mars is a good target for thermal measurements because the low atmospheric pressure combined with the extreme dryness results in a surface dominated by large differences in thermal inertia, minimizing the effect of other physical properties. Since heat is propagated into the surface during the day and re-radiated at night, surface temperatures are affected by sub-surface properties down to several thermal skin depths. Because of this, orbital surface temperature measurements combined with a computational thermal model can be used to determine sub-surface structure. This technique has previously been applied to estimate the thickness and thermal inertia of soil layers on Mars on a regional scale, but the Mars Odyssey Thermal Emission Imaging System "THEMIS" instrument allows much higher-resolution thermal imagery to be obtained. Using archived THEMIS data and the KRC thermal model, a process has been developed for creating high-resolution maps of Martian soil layer thickness and thermal inertia, allowing investigation of the distribution of dust and sand at a scale of 100 m/pixel.
ContributorsHeath, Simon (Author) / Christensen, Philip R. (Philip Russel) (Thesis advisor) / Bel, James (Thesis advisor) / Hervig, Richard (Committee member) / Arizona State University (Publisher)
Created2013
151697-Thumbnail Image.png
Description
Teacher attrition and the migration between schools and districts can have a negative impact on quality of education and teacher performance. Novice teachers leave the profession because they are overwhelmed by the workload and responsibilities of the job. In a previous action research cycle, I found that novice teachers' perceptions

Teacher attrition and the migration between schools and districts can have a negative impact on quality of education and teacher performance. Novice teachers leave the profession because they are overwhelmed by the workload and responsibilities of the job. In a previous action research cycle, I found that novice teachers' perceptions of isolation and lack of opportunities to share experiences had a negative effect on teacher perceptions of efficacy. This action research project examines the effect of leveraging social media and professional learning communities to provide opportunities for a group of novice teachers to share experiences and seek advice. By addressing the challenges that novice teachers face and providing solutions for common problems, it is the hope of this researcher that highly effective teachers will remain in the classroom. The results of the study indicate that the combined use of Twitter and YouTube in collaboration with professional learning communities will improve teacher perceptions of efficacy. Teachers who participated in the social media based professional learning communities are also more likely to remain in the classroom.
ContributorsBostick, Bradley Alan (Author) / Zambo, Ronald (Thesis advisor) / Heck, Thomas (Committee member) / Isai, Shelley (Committee member) / Arizona State University (Publisher)
Created2013
151698-Thumbnail Image.png
Description
Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient

Ionizing radiation used in the patient diagnosis or therapy has negative effects on the patient body in short term and long term depending on the amount of exposure. More than 700,000 examinations are everyday performed on Interventional Radiology modalities [1], however; there is no patient-centric information available to the patient or the Quality Assurance for the amount of organ dose received. In this study, we are exploring the methodologies to systematically reduce the absorbed radiation dose in the Fluoroscopically Guided Interventional Radiology procedures. In the first part of this study, we developed a mathematical model which determines a set of geometry settings for the equipment and a level for the energy during a patient exam. The goal is to minimize the amount of absorbed dose in the critical organs while maintaining image quality required for the diagnosis. The model is a large-scale mixed integer program. We performed polyhedral analysis and derived several sets of strong inequalities to improve the computational speed and quality of the solution. Results present the amount of absorbed dose in the critical organ can be reduced up to 99% for a specific set of angles. In the second part, we apply an approximate gradient method to simultaneously optimize angle and table location while minimizing dose in the critical organs with respect to the image quality. In each iteration, we solve a sub-problem as a MIP to determine the radiation field size and corresponding X-ray tube energy. In the computational experiments, results show further reduction (up to 80%) of the absorbed dose in compare with previous method. Last, there are uncertainties in the medical procedures resulting imprecision of the absorbed dose. We propose a robust formulation to hedge from the worst case absorbed dose while ensuring feasibility. In this part, we investigate a robust approach for the organ motions within a radiology procedure. We minimize the absorbed dose for the critical organs across all input data scenarios which are corresponding to the positioning and size of the organs. The computational results indicate up to 26% increase in the absorbed dose calculated for the robust approach which ensures the feasibility across scenarios.
ContributorsKhodadadegan, Yasaman (Author) / Zhang, Muhong (Thesis advisor) / Pavlicek, William (Thesis advisor) / Fowler, John (Committee member) / Wu, Tong (Committee member) / Arizona State University (Publisher)
Created2013
151699-Thumbnail Image.png
Description
The causes and consequences of stylistic change have been a concern of archaeologists over the past several decades. The actual process of stylistic innovation, however, has received less attention. This project explores the relationship between the process of stylistic innovation on decorated pottery and the social context in which it

The causes and consequences of stylistic change have been a concern of archaeologists over the past several decades. The actual process of stylistic innovation, however, has received less attention. This project explores the relationship between the process of stylistic innovation on decorated pottery and the social context in which it occurred in the Hohokam area of south-central Arizona between A.D. 800 and 1300. This interval was punctuated by three episodes of reorganization, each of which was characterized to varying degrees by significant shifts in ideology, economics, and politics. Each reorganization episode was also accompanied by a rapid profusion of stylistic innovation on buff ware pottery. The goal of this study was to build a framework to understand the variation in the process of innovation as a response to different incentives and opportunities perceived in the changing social environment. By bringing stylistic analyses and provenance data together for the first time in Hohokam red-on-buff studies, I investigated how the process of innovation was variously influenced by social reorganizations at three different periods of time: the 9th, 11th, and 12th centuries A.D. Four variables were used to evaluate the process of innovation at each temporal period: 1) The origin of a stylistic invention, 2) the rate of its adoption, 3) the pattern of its adoption, and 4) the uniformity of its adoption among all buff ware potting communities. To accomplish the task, stylistic innovations and provenance were recorded on over 3,700 red-on-buff sherds were analyzed from 20 sites in the Phoenix Basin. The innovation process was found to vary with each reorganization episode, but often in different ways than expected. The results revealed the complexity and unpredictability of the process of stylistic innovation among the Hohokam. They also challenged some assumptions archaeologists have made regarding the scale and extent of the changes associated with some of the reorganization episodes. The variables utilized to measure the innovation process were found to be effective at providing a composite picture of that process, and thus warrant broader application to other archaeological contexts.
ContributorsLack, Andrew D (Author) / Abbott, David R. (Thesis advisor) / Hegmon, Michelle (Committee member) / Spielmann, Katherine A. (Committee member) / Nelson, Ben A. (Committee member) / Arizona State University (Publisher)
Created2013
151700-Thumbnail Image.png
Description
Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance

Ultrasound imaging is one of the major medical imaging modalities. It is cheap, non-invasive and has low power consumption. Doppler processing is an important part of many ultrasound imaging systems. It is used to provide blood velocity information and is built on top of B-mode systems. We investigate the performance of two velocity estimation schemes used in Doppler processing systems, namely, directional velocity estimation (DVE) and conventional velocity estimation (CVE). We find that DVE provides better estimation performance and is the only functioning method when the beam to flow angle is large. Unfortunately, DVE is computationally expensive and also requires divisions and square root operations that are hard to implement. We propose two approximation techniques to replace these computations. The simulation results on cyst images show that the proposed approximations do not affect the estimation performance. We also study backend processing which includes envelope detection, log compression and scan conversion. Three different envelope detection methods are compared. Among them, FIR based Hilbert Transform is considered the best choice when phase information is not needed, while quadrature demodulation is a better choice if phase information is necessary. Bilinear and Gaussian interpolation are considered for scan conversion. Through simulations of a cyst image, we show that bilinear interpolation provides comparable contrast-to-noise ratio (CNR) performance with Gaussian interpolation and has lower computational complexity. Thus, bilinear interpolation is chosen for our system.
ContributorsWei, Siyuan (Author) / Chakrabarti, Chaitali (Thesis advisor) / Frakes, David (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2013