This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 131
152414-Thumbnail Image.png
Description
Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may

Creative design lies at the intersection of novelty and technical feasibility. These objectives can be achieved through cycles of divergence (idea generation) and convergence (idea evaluation) in conceptual design. The focus of this thesis is on the latter aspect. The evaluation may involve any aspect of technical feasibility and may be desired at component, sub-system or full system level. Two issues that are considered in this work are: 1. Information about design ideas is incomplete, informal and sketchy 2. Designers often work at multiple levels; different aspects or subsystems may be at different levels of abstraction Thus, high fidelity analysis and simulation tools are not appropriate for this purpose. This thesis looks at the requirements for a simulation tool and how it could facilitate concept evaluation. The specific tasks reported in this thesis are: 1. The typical types of information available after an ideation session 2. The typical types of technical evaluations done in early stages 3. How to conduct low fidelity design evaluation given a well-defined feasibility question A computational tool for supporting idea evaluation was designed and implemented. It was assumed that the results of the ideation session are represented as a morphological chart and each entry is expressed as some combination of a sketch, text and references to physical effects and machine components. Approximately 110 physical effects were identified and represented in terms of algebraic equations, physical variables and a textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 16 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works. textual description. A common ontology of physical variables was created so that physical effects could be networked together when variables are shared. This allows users to synthesize complex behaviors from simple ones, without assuming any solution sequence. A library of 15 machine elements was also created and users were given instructions about incorporating them. To support quick analysis, differential equations are transformed to algebraic equations by replacing differential terms with steady state differences), only steady state behavior is considered and interval arithmetic was used for modeling. The tool implementation is done by MATLAB; and a number of case studies are also done to show how the tool works.
ContributorsKhorshidi, Maryam (Author) / Shah, Jami J. (Thesis advisor) / Wu, Teresa (Committee member) / Gel, Esma (Committee member) / Arizona State University (Publisher)
Created2014
152893-Thumbnail Image.png
Description
Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis

Network traffic analysis by means of Quality of Service (QoS) is a popular research and development area among researchers for a long time. It is becoming even more relevant recently due to ever increasing use of the Internet and other public and private communication networks. Fast and precise QoS analysis is a vital task in mission-critical communication networks (MCCNs), where providing a certain level of QoS is essential for national security, safety or economic vitality. In this thesis, the details of all aspects of a comprehensive computational framework for QoS analysis in MCCNs are provided. There are three main QoS analysis tasks in MCCNs; QoS measurement, QoS visualization and QoS prediction. Definitions of these tasks are provided and for each of those, complete solutions are suggested either by referring to an existing work or providing novel methods.

A scalable and accurate passive one-way QoS measurement algorithm is proposed. It is shown that accurate QoS measurements are possible using network flow data.

Requirements of a good QoS visualization platform are listed. Implementations of the capabilities of a complete visualization platform are presented.

Steps of QoS prediction task in MCCNs are defined. The details of feature selection, class balancing through sampling and assessing classification algorithms for this task are outlined. Moreover, a novel tree based logistic regression method for knowledge discovery is introduced. Developed prediction framework is capable of making very accurate packet level QoS predictions and giving valuable insights to network administrators.
ContributorsSenturk, Muhammet Burhan (Author) / Li, Jing (Thesis advisor) / Baydogan, Mustafa G (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153109-Thumbnail Image.png
Description
This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the

This thesis presents a meta-analysis of lead-free solder reliability. The qualitative analyses of the failure modes of lead- free solder under different stress tests including drop test, bend test, thermal test and vibration test are discussed. The main cause of failure of lead- free solder is fatigue crack, and the speed of propagation of the initial crack could differ from different test conditions and different solder materials. A quantitative analysis about the fatigue behavior of SAC lead-free solder under thermal preconditioning process is conducted. This thesis presents a method of making prediction of failure life of solder alloy by building a Weibull regression model. The failure life of solder on circuit board is assumed Weibull distributed. Different materials and test conditions could affect the distribution by changing the shape and scale parameters of Weibull distribution. The method is to model the regression of parameters with different test conditions as predictors based on Bayesian inference concepts. In the process of building regression models, prior distributions are generated according to the previous studies, and Markov Chain Monte Carlo (MCMC) is used under WinBUGS environment.
ContributorsXu, Xinyue (Author) / Pan, Rong (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153145-Thumbnail Image.png
Description
The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5

The main objective of this research is to develop an approach to PV module lifetime prediction. In doing so, the aim is to move from empirical generalizations to a formal predictive science based on data-driven case studies of the crystalline silicon PV systems. The evaluation of PV systems aged 5 to 30 years old that results in systematic predictive capability that is absent today. The warranty period provided by the manufacturers typically range from 20 to 25 years for crystalline silicon modules. The end of lifetime (for example, the time-to-degrade by 20% from rated power) of PV modules is usually calculated using a simple linear extrapolation based on the annual field degradation rate (say, 0.8% drop in power output per year). It has been 26 years since systematic studies on solar PV module lifetime prediction were undertaken as part of the 11-year flat-plate solar array (FSA) project of the Jet Propulsion Laboratory (JPL) funded by DOE. Since then, PV modules have gone through significant changes in construction materials and design; making most of the field data obsolete, though the effect field stressors on the old designs/materials is valuable to be understood. Efforts have been made to adapt some of the techniques developed to the current technologies, but they are too often limited in scope and too reliant on empirical generalizations of previous results. Some systematic approaches have been proposed based on accelerated testing, but no or little experimental studies have followed. Consequently, the industry does not exactly know today how to test modules for a 20 - 30 years lifetime.

This research study focuses on the behavior of crystalline silicon PV module technology in the dry and hot climatic condition of Tempe/Phoenix, Arizona. A three-phase approach was developed: (1) A quantitative failure modes, effects, and criticality analysis (FMECA) was developed for prioritizing failure modes or mechanisms in a given environment; (2) A time-series approach was used to model environmental stress variables involved and prioritize their effect on the power output drop; and (3) A procedure for developing a prediction model was proposed for the climatic specific condition based on accelerated degradation testing
ContributorsKuitche, Joseph Mathurin (Author) / Pan, Rong (Thesis advisor) / Tamizhmani, Govindasamy (Thesis advisor) / Montgomery, Douglas C. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
153188-Thumbnail Image.png
Description
Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU

Conceptual design stage plays a critical role in product development. However, few systematic methods and tools exist to support conceptual design. The long term aim of this project is to develop a tool for facilitating holistic ideation for conceptual design. This research is a continuation of past efforts in ASU Design Automation Lab. In past research, an interactive software test bed (Holistic Ideation Tool - version 1) was developed to explore logical ideation methods. Ideation states were identified and ideation strategies were developed to overcome common ideation blocks. The next version (version 2) of the holistic ideation tool added Cascading Evolutionary Morphological Charts (CEMC) framework and intuitive ideation strategies (reframing, restructuring, random connection, and forced connection).

Despite these remarkable contributions, there exist shortcomings in the previous versions (version 1 and version 2) of the holistic ideation tool. First, there is a need to add new ideation methods to the holistic ideation tool. Second, the organizational framework provided by previous versions needs to be improved, and a holistic approach needs to be devised, instead of separate logical or intuitive approaches. Therefore, the main objective of this thesis is to make the improvements and to resolve technical issues that are involved in their implementation.

Towards this objective, a new web based holistic ideation tool (version 3) has been created. The new tool adds and integrates Knowledge Bases of Mechanisms and Components Off-The-Shelf (COTS) into logical ideation methods. Additionally, an improved CEMC framework has been devised for organizing ideas efficiently. Furthermore, the usability of the tool has been improved by designing and implementing a new graphical user interface (GUI) which is more user friendly. It is hoped that these new features will lead to a platform for the designers to not only generate creative ideas but also effectively organize and store them in the conceptual design stage. By placing it on the web for public use, the Testbed has the potential to be used for research on the ideation process by effectively collecting large amounts of data from designers.
ContributorsNarsale, Sumit Sunil (Author) / Shah, Jami J. (Thesis advisor) / Davidson, Joseph K. (Committee member) / Wu, Teresa (Committee member) / Arizona State University (Publisher)
Created2014
154011-Thumbnail Image.png
Description
This thesis presents a successful application of operations research techniques in nonprofit distribution system to improve the distribution efficiency and increase customer service quality. It focuses on truck routing problems faced by St. Mary’s Food Bank Distribution Center. This problem is modeled as a capacitated vehicle routing problem to improve the distribution efficiency

This thesis presents a successful application of operations research techniques in nonprofit distribution system to improve the distribution efficiency and increase customer service quality. It focuses on truck routing problems faced by St. Mary’s Food Bank Distribution Center. This problem is modeled as a capacitated vehicle routing problem to improve the distribution efficiency and is extended to capacitated vehicle routing problem with time windows to increase customer service quality. Several heuristics are applied to solve these vehicle routing problems and tested in well-known benchmark problems. Algorithms are tested by comparing the results with the plan currently used by St. Mary’s Food Bank Distribution Center. The results suggest heuristics are quite completive: average 17% less trucks and 28.52% less travel time are used in heuristics’ solution.
ContributorsLi, Xiaoyan (Author) / Askin, Ronald (Thesis advisor) / Wu, Teresa (Committee member) / Pan, Rong (Committee member) / Arizona State University (Publisher)
Created2015
156044-Thumbnail Image.png
Description
In a collaborative environment where multiple robots and human beings are expected

to collaborate to perform a task, it becomes essential for a robot to be aware of multiple

agents working in its work environment. A robot must also learn to adapt to

different agents in the workspace and conduct its interaction based

In a collaborative environment where multiple robots and human beings are expected

to collaborate to perform a task, it becomes essential for a robot to be aware of multiple

agents working in its work environment. A robot must also learn to adapt to

different agents in the workspace and conduct its interaction based on the presence

of these agents. A theoretical framework was introduced which performs interaction

learning from demonstrations in a two-agent work environment, and it is called

Interaction Primitives.

This document is an in-depth description of the new state of the art Python

Framework for Interaction Primitives between two agents in a single as well as multiple

task work environment and extension of the original framework in a work environment

with multiple agents doing a single task. The original theory of Interaction

Primitives has been extended to create a framework which will capture correlation

between more than two agents while performing a single task. The new state of the

art Python framework is an intuitive, generic, easy to install and easy to use python

library which can be applied to use the Interaction Primitives framework in a work

environment. This library was tested in simulated environments and controlled laboratory

environment. The results and benchmarks of this library are available in the

related sections of this document.
ContributorsKumar, Ashish, M.S (Author) / Amor, Hani Ben (Thesis advisor) / Zhang, Yu (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2017
155963-Thumbnail Image.png
Description
Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is

Computer Vision as a eld has gone through signicant changes in the last decade.

The eld has seen tremendous success in designing learning systems with hand-crafted

features and in using representation learning to extract better features. In this dissertation

some novel approaches to representation learning and task learning are studied.

Multiple-instance learning which is generalization of supervised learning, is one

example of task learning that is discussed. In particular, a novel non-parametric k-

NN-based multiple-instance learning is proposed, which is shown to outperform other

existing approaches. This solution is applied to a diabetic retinopathy pathology

detection problem eectively.

In cases of representation learning, generality of neural features are investigated

rst. This investigation leads to some critical understanding and results in feature

generality among datasets. The possibility of learning from a mentor network instead

of from labels is then investigated. Distillation of dark knowledge is used to eciently

mentor a small network from a pre-trained large mentor network. These studies help

in understanding representation learning with smaller and compressed networks.
ContributorsVenkatesan, Ragav (Author) / Li, Baoxin (Thesis advisor) / Turaga, Pavan (Committee member) / Yang, Yezhou (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2017
156106-Thumbnail Image.png
Description
One of the greatest 21st century challenges is meeting the needs of a growing world population expected to increase 35% by 2050 given projected trends in diets, consumption and income. This in turn requires a 70-100% improvement on current production capability, even as the world is undergoing systemic climate

One of the greatest 21st century challenges is meeting the needs of a growing world population expected to increase 35% by 2050 given projected trends in diets, consumption and income. This in turn requires a 70-100% improvement on current production capability, even as the world is undergoing systemic climate pattern changes. This growth not only translates to higher demand for staple products, such as rice, wheat, and beans, but also creates demand for high-value products such as fresh fruits and vegetables (FVs), fueled by better economic conditions and a more health conscious consumer. In this case, it would seem that these trends would present opportunities for the economic development of environmentally well-suited regions to produce high-value products. Interestingly, many regions with production potential still exhibit a considerable gap between their current and ‘true’ maximum capability, especially in places where poverty is more common. Paradoxically, often high-value, horticultural products could be produced in these regions, if relatively small capital investments are made and proper marketing and distribution channels are created. The hypothesis is that small farmers within local agricultural systems are well positioned to take advantage of existing sustainable and profitable opportunities, specifically in high-value agricultural production. Unearthing these opportunities can entice investments in small farming development and help them enter the horticultural industry, thus expand the volume, variety and/or quality of products available for global consumption. In this dissertation, the objective is three-fold: (1) to demonstrate the hidden production potential that exist within local agricultural communities, (2) highlight the importance of supply chain modeling tools in the strategic design of local agricultural systems, and (3) demonstrate the application of optimization and machine learning techniques to strategize the implementation of protective agricultural technologies.

As part of this dissertation, a yield approximation method is developed and integrated with a mixed-integer program to estimate a region’s potential to produce non-perennial, vegetable items. This integration offers practical approximations that help decision-makers identify technologies needed to protect agricultural production, alter harvesting patterns to better match market behavior, and provide an analytical framework through which external investment entities can assess different production options.
ContributorsFlores, Hector M. (Author) / Villalobos, Rene (Thesis advisor) / Pan, Rong (Committee member) / Wu, Teresa (Committee member) / Parker, Nathan (Committee member) / Arizona State University (Publisher)
Created2017
156193-Thumbnail Image.png
Description
With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable

With the rise of the Big Data Era, an exponential amount of network data is being generated at an unprecedented rate across a wide-range of high impact micro and macro areas of research---from protein interaction to social networks. The critical challenge is translating this large scale network data into actionable information.

A key task in the data translation is the analysis of network connectivity via marked nodes---the primary focus of our research. We have developed a framework for analyzing network connectivity via marked nodes in large scale graphs, utilizing novel algorithms in three interrelated areas: (1) analysis of a single seed node via it’s ego-centric network (AttriPart algorithm); (2) pathway identification between two seed nodes (K-Simple Shortest Paths Multithreaded and Search Reduced (KSSPR) algorithm); and (3) tree detection, defining the interaction between three or more seed nodes (Shortest Path MST algorithm).

In an effort to address both fundamental and applied research issues, we have developed the LocalForcasting algorithm to explore how network connectivity analysis can be applied to local community evolution and recommender systems. The goal is to apply the LocalForecasting algorithm to various domains---e.g., friend suggestions in social networks or future collaboration in co-authorship networks. This algorithm utilizes link prediction in combination with the AttriPart algorithm to predict future connections in local graph partitions.

Results show that our proposed AttriPart algorithm finds up to 1.6x denser local partitions, while running approximately 43x faster than traditional local partitioning techniques (PageRank-Nibble). In addition, our LocalForecasting algorithm demonstrates a significant improvement in the number of nodes and edges correctly predicted over baseline methods. Furthermore, results for the KSSPR algorithm demonstrate a speed-up of up to 2.5x the standard k-simple shortest paths algorithm.
ContributorsFreitas, Scott (Author) / Tong, Hanghang (Thesis advisor) / Maciejewski, Ross (Committee member) / Yang, Yezhou (Committee member) / Arizona State University (Publisher)
Created2018