This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 73
151945-Thumbnail Image.png
Description
In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a

In recent years we have witnessed a shift towards multi-processor system-on-chips (MPSoCs) to address the demands of embedded devices (such as cell phones, GPS devices, luxury car features, etc.). Highly optimized MPSoCs are well-suited to tackle the complex application demands desired by the end user customer. These MPSoCs incorporate a constellation of heterogeneous processing elements (PEs) (general purpose PEs and application-specific integrated circuits (ASICS)). A typical MPSoC will be composed of a application processor, such as an ARM Coretex-A9 with cache coherent memory hierarchy, and several application sub-systems. Each of these sub-systems are composed of highly optimized instruction processors, graphics/DSP processors, and custom hardware accelerators. Typically, these sub-systems utilize scratchpad memories (SPM) rather than support cache coherency. The overall architecture is an integration of the various sub-systems through a high bandwidth system-level interconnect (such as a Network-on-Chip (NoC)). The shift to MPSoCs has been fueled by three major factors: demand for high performance, the use of component libraries, and short design turn around time. As customers continue to desire more and more complex applications on their embedded devices the performance demand for these devices continues to increase. Designers have turned to using MPSoCs to address this demand. By using pre-made IP libraries designers can quickly piece together a MPSoC that will meet the application demands of the end user with minimal time spent designing new hardware. Additionally, the use of MPSoCs allows designers to generate new devices very quickly and thus reducing the time to market. In this work, a complete MPSoC synthesis design flow is presented. We first present a technique \cite{leary1_intro} to address the synthesis of the interconnect architecture (particularly Network-on-Chip (NoC)). We then address the synthesis of the memory architecture of a MPSoC sub-system \cite{leary2_intro}. Lastly, we present a co-synthesis technique to generate the functional and memory architectures simultaneously. The validity and quality of each synthesis technique is demonstrated through extensive experimentation.
ContributorsLeary, Glenn (Author) / Chatha, Karamvir S (Thesis advisor) / Vrudhula, Sarma (Committee member) / Shrivastava, Aviral (Committee member) / Beraha, Rudy (Committee member) / Arizona State University (Publisher)
Created2013
151656-Thumbnail Image.png
Description
Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all

Image resolution limits the extent to which zooming enhances clarity, restricts the size digital photographs can be printed at, and, in the context of medical images, can prevent a diagnosis. Interpolation is the supplementing of known data with estimated values based on a function or model involving some or all of the known samples. The selection of the contributing data points and the specifics of how they are used to define the interpolated values influences how effectively the interpolation algorithm is able to estimate the underlying, continuous signal. The main contributions of this dissertation are three fold: 1) Reframing edge-directed interpolation of a single image as an intensity-based registration problem. 2) Providing an analytical framework for intensity-based registration using control grid constraints. 3) Quantitative assessment of the new, single-image enlargement algorithm based on analytical intensity-based registration. In addition to single image resizing, the new methods and analytical approaches were extended to address a wide range of applications including volumetric (multi-slice) image interpolation, video deinterlacing, motion detection, and atmospheric distortion correction. Overall, the new approaches generate results that more accurately reflect the underlying signals than less computationally demanding approaches and with lower processing requirements and fewer restrictions than methods with comparable accuracy.
ContributorsZwart, Christine M. (Author) / Frakes, David H (Thesis advisor) / Karam, Lina (Committee member) / Kodibagkar, Vikram (Committee member) / Spanias, Andreas (Committee member) / Towe, Bruce (Committee member) / Arizona State University (Publisher)
Created2013
151383-Thumbnail Image.png
Description
Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera -

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic features reliably extracted from the proposed inexpensive and portable motion capture system and classifiers that correlate torso movement to clinical measures of unimpaired and impaired. Experiment results show that the proposed sensing and analysis works reliably on measuring torso movement quality and is promising for end-point tracking. The system is currently being deployed for large-scale evaluations.
ContributorsDu, Tingfang (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2012
151542-Thumbnail Image.png
Description
Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity

Asymptotic comparisons of ergodic channel capacity at high and low signal-to-noise ratios (SNRs) are provided for several adaptive transmission schemes over fading channels with general distributions, including optimal power and rate adaptation, rate adaptation only, channel inversion and its variants. Analysis of the high-SNR pre-log constants of the ergodic capacity reveals the existence of constant capacity difference gaps among the schemes with a pre-log constant of 1. Closed-form expressions for these high-SNR capacity difference gaps are derived, which are proportional to the SNR loss between these schemes in dB scale. The largest one of these gaps is found to be between the optimal power and rate adaptation scheme and the channel inversion scheme. Based on these expressions it is shown that the presence of space diversity or multi-user diversity makes channel inversion arbitrarily close to achieving optimal capacity at high SNR with sufficiently large number of antennas or users. A low-SNR analysis also reveals that the presence of fading provably always improves capacity at sufficiently low SNR, compared to the additive white Gaussian noise (AWGN) case. Numerical results are shown to corroborate our analytical results. This dissertation derives high-SNR asymptotic average error rates over fading channels by relating them to the outage probability, under mild assumptions. The analysis is based on the Tauberian theorem for Laplace-Stieltjes transforms which is grounded on the notion of regular variation, and applies to a wider range of channel distributions than existing approaches. The theory of regular variation is argued to be the proper mathematical framework for finding sufficient and necessary conditions for outage events to dominate high-SNR error rate performance. It is proved that the diversity order being d and the cumulative distribution function (CDF) of the channel power gain having variation exponent d at 0 imply each other, provided that the instantaneous error rate is upper-bounded by an exponential function of the instantaneous SNR. High-SNR asymptotic average error rates are derived for specific instantaneous error rates. Compared to existing approaches in the literature, the asymptotic expressions are related to the channel distribution in a much simpler manner herein, and related with outage more intuitively. The high-SNR asymptotic error rate is also characterized under diversity combining schemes with the channel power gain of each branch having a regularly varying CDF. Numerical results are shown to corroborate our theoretical analysis. This dissertation studies several problems concerning channel inclusion, which is a partial ordering between discrete memoryless channels (DMCs) proposed by Shannon. Specifically, majorization-based conditions are derived for channel inclusion between certain DMCs. Furthermore, under general conditions, channel equivalence defined through Shannon ordering is shown to be the same as permutation of input and output symbols. The determination of channel inclusion is considered as a convex optimization problem, and the sparsity of the weights related to the representation of the worse DMC in terms of the better one is revealed when channel inclusion holds between two DMCs. For the exploitation of this sparsity, an effective iterative algorithm is established based on modifying the orthogonal matching pursuit algorithm. The extension of channel inclusion to continuous channels and its application in ordering phase noises are briefly addressed.
ContributorsZhang, Yuan (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Zhang, Junshan (Committee member) / Reisslein, Martin (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2013
152475-Thumbnail Image.png
Description
Recently, the location of the nodes in wireless networks has been modeled as point processes. In this dissertation, various scenarios of wireless communications in large-scale networks modeled as point processes are considered. The first part of the dissertation considers signal reception and detection problems with symmetric alpha stable noise which

Recently, the location of the nodes in wireless networks has been modeled as point processes. In this dissertation, various scenarios of wireless communications in large-scale networks modeled as point processes are considered. The first part of the dissertation considers signal reception and detection problems with symmetric alpha stable noise which is from an interfering network modeled as a Poisson point process. For the signal reception problem, the performance of space-time coding (STC) over fading channels with alpha stable noise is studied. We derive pairwise error probability (PEP) of orthogonal STCs. For general STCs, we propose a maximum-likelihood (ML) receiver, and its approximation. The resulting asymptotically optimal receiver (AOR) does not depend on noise parameters and is computationally simple, and close to the ML performance. Then, signal detection in coexisting wireless sensor networks (WSNs) is considered. We define a binary hypothesis testing problem for the signal detection in coexisting WSNs. For the problem, we introduce the ML detector and simpler alternatives. The proposed mixed-fractional lower order moment (FLOM) detector is computationally simple and close to the ML performance. Stochastic orders are binary relations defined on probability. The second part of the dissertation introduces stochastic ordering of interferences in large-scale networks modeled as point processes. Since closed-form results for the interference distributions for such networks are only available in limited cases, it is of interest to compare network interferences using stochastic. In this dissertation, conditions on the fading distribution and path-loss model are given to establish stochastic ordering between interferences. Moreover, Laplace functional (LF) ordering is defined between point processes and applied for comparing interference. Then, the LF orderings of general classes of point processes are introduced. It is also shown that the LF ordering is preserved when independent operations such as marking, thinning, random translation, and superposition are applied. The LF ordering of point processes is a useful tool for comparing spatial deployments of wireless networks and can be used to establish comparisons of several performance metrics such as coverage probability, achievable rate, and resource allocation even when closed form expressions for such metrics are unavailable.
ContributorsLee, Junghoon (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Spanias, Andreas (Committee member) / Reisslein, Martin (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2014
151851-Thumbnail Image.png
Description
In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by

In this thesis we deal with the problem of temporal logic robustness estimation. We present a dynamic programming algorithm for the robust estimation problem of Metric Temporal Logic (MTL) formulas regarding a finite trace of time stated sequence. This algorithm not only tests if the MTL specification is satisfied by the given input which is a finite system trajectory, but also quantifies to what extend does the sequence satisfies or violates the MTL specification. The implementation of the algorithm is the DP-TALIRO toolbox for MATLAB. Currently it is used as the temporal logic robust computing engine of S-TALIRO which is a tool for MATLAB searching for trajectories of minimal robustness in Simulink/ Stateflow. DP-TALIRO is expected to have near linear running time and constant memory requirement depending on the structure of the MTL formula. DP-TALIRO toolbox also integrates new features not supported in its ancestor FW-TALIRO such as parameter replacement, most related iteration and most related predicate. A derivative of DP-TALIRO which is DP-T-TALIRO is also addressed in this thesis which applies dynamic programming algorithm for time robustness computation. We test the running time of DP-TALIRO and compare it with FW-TALIRO. Finally, we present an application where DP-TALIRO is used as the robustness computation core of S-TALIRO for a parameter estimation problem.
ContributorsYang, Hengyi (Author) / Fainekos, Georgios (Thesis advisor) / Sarjoughian, Hessam S. (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2013
152813-Thumbnail Image.png
Description
Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's smart phone is utilized to perform compressive analysis and efficient

Continuous monitoring of sensor data from smart phones to identify human activities and gestures, puts a heavy load on the smart phone's power consumption. In this research study, the non-Euclidean geometry of the rich sensor data obtained from the user's smart phone is utilized to perform compressive analysis and efficient classification of human activities by employing machine learning techniques. We are interested in the generalization of classical tools for signal approximation to newer spaces, such as rotation data, which is best studied in a non-Euclidean setting, and its application to activity analysis. Attributing to the non-linear nature of the rotation data space, which involve a heavy overload on the smart phone's processor and memory as opposed to feature extraction on the Euclidean space, indexing and compaction of the acquired sensor data is performed prior to feature extraction, to reduce CPU overhead and thereby increase the lifetime of the battery with a little loss in recognition accuracy of the activities. The sensor data represented as unit quaternions, is a more intrinsic representation of the orientation of smart phone compared to Euler angles (which suffers from Gimbal lock problem) or the computationally intensive rotation matrices. Classification algorithms are employed to classify these manifold sequences in the non-Euclidean space. By performing customized indexing (using K-means algorithm) of the evolved manifold sequences before feature extraction, considerable energy savings is achieved in terms of smart phone's battery life.
ContributorsSivakumar, Aswin (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2014
152778-Thumbnail Image.png
Description
Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense

Software has a great impact on the energy efficiency of any computing system--it can manage the components of a system efficiently or inefficiently. The impact of software is amplified in the context of a wearable computing system used for activity recognition. The design space this platform opens up is immense and encompasses sensors, feature calculations, activity classification algorithms, sleep schedules, and transmission protocols. Design choices in each of these areas impact energy use, overall accuracy, and usefulness of the system. This thesis explores methods software can influence the trade-off between energy consumption and system accuracy. In general the more energy a system consumes the more accurate will be. We explore how finding the transitions between human activities is able to reduce the energy consumption of such systems without reducing much accuracy. We introduce the Log-likelihood Ratio Test as a method to detect transitions, and explore how choices of sensor, feature calculations, and parameters concerning time segmentation affect the accuracy of this method. We discovered an approximate 5X increase in energy efficiency could be achieved with only a 5% decrease in accuracy. We also address how a system's sleep mode, in which the processor enters a low-power state and sensors are turned off, affects a wearable computing platform that does activity recognition. We discuss the energy trade-offs in each stage of the activity recognition process. We find that careful analysis of these parameters can result in great increases in energy efficiency if small compromises in overall accuracy can be tolerated. We call this the ``Great Compromise.'' We found a 6X increase in efficiency with a 7% decrease in accuracy. We then consider how wireless transmission of data affects the overall energy efficiency of a wearable computing platform. We find that design decisions such as feature calculations and grouping size have a great impact on the energy consumption of the system because of the amount of data that is stored and transmitted. For example, storing and transmitting vector-based features such as FFT or DCT do not compress the signal and would use more energy than storing and transmitting the raw signal. The effect of grouping size on energy consumption depends on the feature. For scalar features energy consumption is proportional in the inverse of grouping size, so it's reduced as grouping size goes up. For features that depend on the grouping size, such as FFT, energy increases with the logarithm of grouping size, so energy consumption increases slowly as grouping size increases. We find that compressing data through activity classification and transition detection significantly reduces energy consumption and that the energy consumed for the classification overhead is negligible compared to the energy savings from data compression. We provide mathematical models of energy usage and data generation, and test our ideas using a mobile computing platform, the Texas Instruments Chronos watch.
ContributorsBoyd, Jeffrey Michael (Author) / Sundaram, Hari (Thesis advisor) / Li, Baoxin (Thesis advisor) / Shrivastava, Aviral (Committee member) / Turaga, Pavan (Committee member) / Arizona State University (Publisher)
Created2014
152997-Thumbnail Image.png
Description
Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The

Stream processing has emerged as an important model of computation especially in the context of multimedia and communication sub-systems of embedded System-on-Chip (SoC) architectures. The dataflow nature of streaming applications allows them to be most naturally expressed as a set of kernels iteratively operating on continuous streams of data. The kernels are computationally intensive and are mainly characterized by real-time constraints that demand high throughput and data bandwidth with limited global data reuse. Conventional architectures fail to meet these demands due to their poorly matched execution models and the overheads associated with instruction and data movements.

This work presents StreamWorks, a multi-core embedded architecture for energy-efficient stream computing. The basic processing element in the StreamWorks architecture is the StreamEngine (SE) which is responsible for iteratively executing a stream kernel. SE introduces an instruction locking mechanism that exploits the iterative nature of the kernels and enables fine-grain instruction reuse. Each instruction in a SE is locked to a Reservation Station (RS) and revitalizes itself after execution; thus never retiring from the RS. The entire kernel is hosted in RS Banks (RSBs) close to functional units for energy-efficient instruction delivery. The dataflow semantics of stream kernels are captured by a context-aware dataflow execution mode that efficiently exploits the Instruction Level Parallelism (ILP) and Data-level parallelism (DLP) within stream kernels.

Multiple SEs are grouped together to form a StreamCluster (SC) that communicate via a local interconnect. A novel software FIFO virtualization technique with split-join functionality is proposed for efficient and scalable stream communication across SEs. The proposed communication mechanism exploits the Task-level parallelism (TLP) of the stream application. The performance and scalability of the communication mechanism is evaluated against the existing data movement schemes for scratchpad based multi-core architectures. Further, overlay schemes and architectural support are proposed that allow hosting any number of kernels on the StreamWorks architecture. The proposed oevrlay schemes for code management supports kernel(context) switching for the most common use cases and can be adapted for any multi-core architecture that use software managed local memories.

The performance and energy-efficiency of the StreamWorks architecture is evaluated for stream kernel and application benchmarks by implementing the architecture in 45nm TSMC and comparison with a low power RISC core and a contemporary accelerator.
ContributorsPanda, Amrit (Author) / Chatha, Karam S. (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Shrivastava, Aviral (Committee member) / Arizona State University (Publisher)
Created2014
153089-Thumbnail Image.png
Description
A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other

A benchmark suite that is representative of the programs a processor typically executes is necessary to understand a processor's performance or energy consumption characteristics. The first contribution of this work addresses this need for mobile platforms with MobileBench, a selection of representative smartphone applications. In smartphones, like any other portable computing systems, energy is a limited resource. Based on the energy characterization of a commercial widely-used smartphone, application cores are found to consume a significant part of the total energy consumption of the device. With this insight, the subsequent part of this thesis focuses on the portion of energy that is spent to move data from the memory system to the application core's internal registers. The primary motivation for this work comes from the relatively higher power consumption associated with a data movement instruction compared to that of an arithmetic instruction. The data movement energy cost is worsened esp. in a System on Chip (SoC) because the amount of data received and exchanged in a SoC based smartphone increases at an explosive rate. A detailed investigation is performed to quantify the impact of data movement

on the overall energy consumption of a smartphone device. To aid this study, microbenchmarks that generate desired data movement patterns between different levels of the memory hierarchy are designed. Energy costs of data movement are then computed by measuring the instantaneous power consumption of the device when the micro benchmarks are executed. This work makes an extensive use of hardware performance counters to validate the memory access behavior of microbenchmarks and to characterize the energy consumed in moving data. Finally, the calculated energy costs of data movement are used to characterize the portion of energy that MobileBench applications spend in moving data. The results of this study show that a significant 35% of the total device energy is spent in data movement alone. Energy is an increasingly important criteria in the context of designing architectures for future smartphones and this thesis offers insights into data movement energy consumption.
ContributorsPandiyan, Dhinakaran (Author) / Wu, Carole-Jean (Thesis advisor) / Shrivastava, Aviral (Committee member) / Lee, Yann-Hang (Committee member) / Arizona State University (Publisher)
Created2014