This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 77
153932-Thumbnail Image.png
Description
Design problem formulation is believed to influence creativity, yet it has received only modest attention in the research community. Past studies of problem formulation are scarce and often have small sample sizes. The main objective of this research is to understand how problem formulation affects creative outcome. Three research areas

Design problem formulation is believed to influence creativity, yet it has received only modest attention in the research community. Past studies of problem formulation are scarce and often have small sample sizes. The main objective of this research is to understand how problem formulation affects creative outcome. Three research areas are investigated: development of a model which facilitates capturing the differences among designers' problem formulation; representation and implication of those differences; the relation between problem formulation and creativity.

This dissertation proposes the Problem Map (P-maps) ontological framework. P-maps represent designers' problem formulation in terms of six groups of entities (requirement, use scenario, function, artifact, behavior, and issue). Entities have hierarchies within each group and links among groups. Variables extracted from P-maps characterize problem formulation.

Three experiments were conducted. The first experiment was to study the similarities and differences between novice and expert designers. Results show that experts use more abstraction than novices do and novices are more likely to add entities in a specific order. Experts also discover more issues.

The second experiment was to see how problem formulation relates to creativity. Ideation metrics were used to characterize creative outcome. Results include but are not limited to a positive correlation between adding more issues in an unorganized way with quantity and variety, more use scenarios and functions with novelty, more behaviors and conflicts identified with quality, and depth-first exploration with all ideation metrics. Fewer hierarchies in use scenarios lower novelty and fewer links to requirements and issues lower quality of ideas.

The third experiment was to see if problem formulation can predict creative outcome. Models based on one problem were used to predict the creativity of another. Predicted scores were compared to assessments of independent judges. Quality and novelty are predicted more accurately than variety, and quantity. Backward elimination improves model fit, though reduces prediction accuracy.

P-maps provide a theoretical framework for formalizing, tracing, and quantifying conceptual design strategies. Other potential applications are developing a test of problem formulation skill, tracking students' learning of formulation skills in a course, and reproducing other researchers’ observations about designer thinking.
ContributorsDinar, Mahmoud (Author) / Shah, Jami J. (Thesis advisor) / Langley, Pat (Committee member) / Davidson, Joseph K. (Committee member) / Lande, Micah (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2015
155910-Thumbnail Image.png
Description
The interaction between humans and robots has become an important area of research as the diversity of robotic applications has grown. The cooperation of a human and robot to achieve a goal is an important area within the physical human-robot interaction (pHRI) field. The expansion of this field is toward

The interaction between humans and robots has become an important area of research as the diversity of robotic applications has grown. The cooperation of a human and robot to achieve a goal is an important area within the physical human-robot interaction (pHRI) field. The expansion of this field is toward moving robotics into applications in unstructured environments. When humans cooperate with each other, often there are leader and follower roles. These roles may change during the task. This creates a need for the robotic system to be able to exchange roles with the human during a cooperative task. The unstructured nature of the new applications in the field creates a need for robotic systems to be able to interact in six degrees of freedom (DOF). Moreover, in these unstructured environments, the robotic system will have incomplete information. This means that it will sometimes perform an incorrect action and control methods need to be able to correct for this. However, the most compelling applications for robotics are where they have capabilities that the human does not, which also creates the need for robotic systems to be able to correct human action when it detects an error. Activity in the brain precedes human action. Utilizing this activity in the brain can classify the type of interaction desired by the human. For this dissertation, the cooperation between humans and robots is improved in two main areas. First, the ability for electroencephalogram (EEG) to determine the desired cooperation role with a human is demonstrated with a correct classification rate of 65%. Second, a robotic controller is developed to allow the human and robot to cooperate in six DOF with asymmetric role exchange. This system allowed human-robot cooperation to perform a cooperative task at 100% correct rate. High, medium, and low levels of robotic automation are shown to affect performance, with the human making the greatest numbers of errors when the robotic system has a medium level of automation.
ContributorsWhitsell, Bryan Douglas (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Committee member) / Berman, Spring (Committee member) / Lee, Hyunglae (Committee member) / Polygerinos, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2017
156283-Thumbnail Image.png
Description
In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a

In this dissertation, three complex material systems including a novel class of hyperuniform composite materials, cellularized collagen gel and low melting point alloy (LMPA) composite are investigated, using statistical pattern characterization, stochastic microstructure reconstruction and micromechanical analysis. In Chapter 1, an introduction of this report is provided, in which a brief review is made about these three material systems. In Chapter 2, detailed discussion of the statistical morphological descriptors and a stochastic optimization approach for microstructure reconstruction is presented. In Chapter 3, the lattice particle method for micromechanical analysis of complex heterogeneous materials is introduced. In Chapter 4, a new class of hyperuniform heterogeneous material with superior mechanical properties is investigated. In Chapter 5, a bio-material system, i.e., cellularized collagen gel is modeled using correlation functions and stochastic reconstruction to study the collective dynamic behavior of the embed tumor cells. In chapter 6, LMPA soft robotic system is generated by generalizing the correlation functions and the rigidity tunability of this smart composite is discussed. In Chapter 7, a future work plan is presented.
ContributorsXu, Yaopengxiao (Author) / Jiao, Yang (Thesis advisor) / Liu, Yongming (Committee member) / Wang, Qing Hua (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
156398-Thumbnail Image.png
Description
Human locomotion is an essential function that enables individuals to lead healthy, independent lives. One important feature of natural walking is the capacity to transition across varying surfaces, enabling an individual to traverse complex terrains while maintaining balance. There has been extensive work regarding improving prostheses' performance in changing walking

Human locomotion is an essential function that enables individuals to lead healthy, independent lives. One important feature of natural walking is the capacity to transition across varying surfaces, enabling an individual to traverse complex terrains while maintaining balance. There has been extensive work regarding improving prostheses' performance in changing walking conditions, but there is still a need to address the transition from rigid to compliant or dynamic surfaces, such as the transition from pavement to long grass or soft sand. This research aims to investigate the mechanisms involved such transitions and identify potential indicators of the anticipated change that can be applied to the control of a powered ankle prosthetic to reduce falls and improve stability in lower-limb amputees in a wider range of walking environments. A series of human subject experiments were conducted using the Variable Stiffness Treadmill (VST) to control walking surface compliance while gait kinematics and muscular activation data were collected from three healthy, nondisabled subjects. Specifically, the kinematics and electromyography (EMG) profiles of the gait cycles immediately preceding and following an expected change in surface compliance were compared to that of normal, rigid surface walking. While the results do not indicate statistical differences in the EMG profiles between the two modes of walking, the muscle activation appears to be qualitatively different from inspection of the data. Additionally, there were promising statistically significant changes in joint angles, especially in observed increases in hip flexion during the swing phases both before and during an expected change in surface. Decreases in ankle flexion immediately before heel strike on the perturbed leg were also observed to occur simultaneously with decreases in tibialis anterior (TA) muscle activation, which encourages additional research investigating potential changes in EMG profiles. Ultimately, more work should be done to make strong conclusions about potential indicators of walking surface transitions, but this research demonstrates the potential of EMG and kinematic data to be used in the control of a powered ankle prosthetic.
ContributorsFou, Linda (Author) / Artemiadis, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Polygerinos, Panagiotis (Committee member) / Arizona State University (Publisher)
Created2018
157461-Thumbnail Image.png
Description
Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a

Locomotion is of prime importance in enabling human beings to effectively respond

in space and time to meet different needs. Approximately 2 million Americans live

with an amputation with most of those amputations being of the lower limbs. To

advance current state-of-the-art lower limb prosthetic devices, it is necessary to adapt

performance at a level of intelligence seen in human walking. As such, this thesis

focuses on the mechanisms involved during human walking, while transitioning from

rigid to compliant surfaces such as from pavement to sand, grass or granular media.

Utilizing a unique tool, the Variable Stiffness Treadmill (VST), as the platform for

human walking, rigid to compliant surface transitions are simulated. The analysis of

muscular activation during the transition from rigid to different compliant surfaces

reveals specific anticipatory muscle activation that precedes stepping on a compliant

surface. There is also an indication of varying responses for different surface stiffness

levels. This response is observed across subjects. Results obtained are novel and

useful in establishing a framework for implementing control algorithm parameters to

improve powered ankle prosthesis. With this, it is possible for the prosthesis to adapt

to a new surface and therefore resulting in a more robust smart powered lower limb

prosthesis.
ContributorsObeng, Ruby Afriyie (Author) / Artemiadis, Panagiotis (Thesis advisor) / Santello, Marco (Thesis advisor) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
157430-Thumbnail Image.png
Description
Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force

Basilisk lizards are often studied for their unique ability to run across the surface of

water. Due to the complicated fluid dynamics of this process, the forces applied on the

water’s surface cannot be measured using traditional methods. This thesis presents a

novel technique of measuring the forces using a fluid dynamic force platform (FDFP),

a light, rigid box immersed in water. This platform, along with a motion capture

system, can be used to characterize the kinematics and dynamics of a basilisk lizard

running on water. This could ultimately lead to robots that can run on water in a

similar manner.
ContributorsSweeney, Andrew Joseph (Author) / Marvi, Hamidreza (Thesis advisor) / Lentink, David (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2019
156496-Thumbnail Image.png
Description
Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can

Soft Poly-Limb (SPL) is a pneumatically driven, wearable, soft continuum robotic arm designed to aid humans with medical conditions, such as cerebral palsy, paraplegia, cervical spondylotic myelopathy, perform activities of daily living. To support user's tasks, the SPL acts as an additional limb extending from the human body which can be controlled to perform safe and compliant mobile manipulation in three-dimensional space. The SPL is inspired by invertebrate limbs, such as the elephant trunk and the arms of the octopus. In this work, various geometrical and physical parameters of the SPL are identified, and behavior of the actuators that comprise it are studied by varying their parameters through novel quasi-static computational models. As a result, this study provides a set of engineering design rules to create soft actuators for continuum soft robotic arms by understanding how varying parameters affect the actuator's motion as a function of the input pressure. A prototype of the SPL is fabricated to analyze the accuracy of these computational models by performing linear expansion, bending and arbitrary pose tests. Furthermore, combinations of the parameters based on the application of the SPL are determined to affect the weight, payload capacity, and stiffness of the arm. Experimental results demonstrate the accuracy of the proposed computational models and help in understanding the behavior of soft compliant actuators. Finally, based on the set functional requirements for the assistance of impaired users, results show the effectiveness of the SPL in performing tasks for activities of daily living.
ContributorsNuthi, Sai Gautham (Author) / Polygerinos, Panagiotis (Thesis advisor) / Lee, Hyunglae (Committee member) / Yong, Sze Zheng (Committee member) / Arizona State University (Publisher)
Created2018
156724-Thumbnail Image.png
Description
The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared

The world population is aging. Age-related disorders such as stroke and spinal cord injury are increasing rapidly, and such patients often suffer from mobility impairment. Wearable robotic exoskeletons are developed that serve as rehabilitation devices for these patients. In this thesis, a knee exoskeleton design with higher torque output compared to the first version, is designed and fabricated.

A series elastic actuator is one of the many actuation mechanisms employed in exoskeletons. In this mechanism a torsion spring is used between the actuator and human joint. It serves as torque sensor and energy buffer, making it compact and

safe.

A version of knee exoskeleton was developed using the SEA mechanism. It uses worm gear and spur gear combination to amplify the assistive torque generated from the DC motor. It weighs 1.57 kg and provides a maximum assistive torque of 11.26 N·m. It can be used as a rehabilitation device for patients affected with knee joint impairment.

A new version of exoskeleton design is proposed as an improvement over the first version. It consists of components such as brushless DC motor and planetary gear that are selected to meet the design requirements and biomechanical considerations. All the other components such as bevel gear and torsion spring are selected to be compatible with the exoskeleton. The frame of the exoskeleton is modeled in SolidWorks to be modular and easy to assemble. It is fabricated using sheet metal aluminum. It is designed to provide a maximum assistive torque of 23 N·m, two times over the present exoskeleton. A simple brace is 3D printed, making it easy to wear and use. It weighs 2.4 kg.

The exoskeleton is equipped with encoders that are used to measure spring deflection and motor angle. They act as sensors for precise control of the exoskeleton.

An impedance-based control is implemented using NI MyRIO, a FPGA based controller. The motor is controlled using a motor driver and powered using an external battery source. The bench tests and walking tests are presented. The new version of exoskeleton is compared with first version and state of the art devices.
ContributorsJhawar, Vaibhav (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas G. (Committee member) / Lee, Hyunglae (Committee member) / Marvi, Hamidreza (Committee member) / Arizona State University (Publisher)
Created2018
156902-Thumbnail Image.png
Description
Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their

Pipeline infrastructure forms a vital aspect of the United States economy and standard of living. A majority of the current pipeline systems were installed in the early 1900’s and often lack a reliable database reporting the mechanical properties, and information about manufacturing and installation, thereby raising a concern for their safety and integrity. Testing for the aging pipe strength and toughness estimation without interrupting the transmission and operations thus becomes important. The state-of-the-art techniques tend to focus on the single modality deterministic estimation of pipe strength and do not account for inhomogeneity and uncertainties, many others appear to rely on destructive means. These gaps provide an impetus for novel methods to better characterize the pipe material properties. The focus of this study is the design of a Bayesian Network information fusion model for the prediction of accurate probabilistic pipe strength and consequently the maximum allowable operating pressure. A multimodal diagnosis is performed by assessing the mechanical property variation within the pipe in terms of material property measurements, such as microstructure, composition, hardness and other mechanical properties through experimental analysis, which are then integrated with the Bayesian network model that uses a Markov chain Monte Carlo (MCMC) algorithm. Prototype testing is carried out for model verification, validation and demonstration and data training of the model is employed to obtain a more accurate measure of the probabilistic pipe strength. With a view of providing a holistic measure of material performance in service, the fatigue properties of the pipe steel are investigated. The variation in the fatigue crack growth rate (da/dN) along the direction of the pipe wall thickness is studied in relation to the microstructure and the material constants for the crack growth have been reported. A combination of imaging and composition analysis is incorporated to study the fracture surface of the fatigue specimen. Finally, some well-known statistical inference models are employed for prediction of manufacturing process parameters for steel pipelines. The adaptability of the small datasets for the accuracy of the prediction outcomes is discussed and the models are compared for their performance.
ContributorsDahire, Sonam (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Ren, Yi (Committee member) / Arizona State University (Publisher)
Created2018
157143-Thumbnail Image.png
Description
The Basilisk lizard is known for its agile locomotion capabilities on granular and aquatic media making it an impressive model organism for studying multi-terrain locomotion mechanics. The work presented here is aimed at understanding locomotion characteristics of Basilisk lizards through a systematic series of robotic and animal experiments. In this

The Basilisk lizard is known for its agile locomotion capabilities on granular and aquatic media making it an impressive model organism for studying multi-terrain locomotion mechanics. The work presented here is aimed at understanding locomotion characteristics of Basilisk lizards through a systematic series of robotic and animal experiments. In this work, a Basilisk lizard inspired legged robot with bipedal and quadrupedal locomotion capabilities is presented. A series of robot experiments are conducted on dry and wet (saturated) granular media to determine the effects of gait parameters and substrate saturation, on robot velocity and energetics. Gait parameters studied here are stride frequency and stride length. Results of robot experiments are compared with previously obtained animal data. It is observed that for a fixed robot stride frequency, velocity and stride length increase with increasing saturation, confirming the locomotion characteristics of the Basilisk lizard. It is further observed that with increasing saturation level, robot cost of transport decreases. An identical series of robot experiments are performed with quadrupedal gait to determine effects of gait parameters on robot performance. Generally, energetics of bipedal running is observed to be higher than quadrupedal operation. Experimental results also reveal how gait parameters can be varied to achieve different desired velocities depending on the substrate saturation level. In addition to robot experiments on granular media, a series of animal experiments are conducted to determine and characterize strategies

exhibited by Basilisk lizards when transitioning from granular to aquatic media.
ContributorsJayanetti, Vidu (Author) / Marvi, Hamid (Thesis advisor) / Emady, Heather (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2018