This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 70
152195-Thumbnail Image.png
Description
Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The

Topological insulators with conducting surface states yet insulating bulk states have generated a lot of interest amongst the physics community due to their varied characteristics and possible applications. Doped topological insulators have presented newer physical states of matter where topological order co&ndashexists; with other physical properties (like magnetic order). The electronic states of these materials are very intriguing and pose problems and the possible solutions to understanding their unique behaviors. In this work, we use Electron Energy Loss Spectroscopy (EELS) – an analytical TEM tool to study both core&ndashlevel; and valence&ndashlevel; excitations in Bi2Se3 and Cu(doped)Bi2Se3 topological insulators. We use this technique to retrieve information on the valence, bonding nature, co-ordination and lattice site occupancy of the undoped and the doped systems. Using the reference materials Cu(I)Se and Cu(II)Se we try to compare and understand the nature of doping that copper assumes in the lattice. And lastly we utilize the state of the art monochromated Nion UltraSTEM 100 to study electronic/vibrational excitations at a record energy resolution from sub-nm regions in the sample.
ContributorsSubramanian, Ganesh (Author) / Spence, John (Thesis advisor) / Jiang, Nan (Committee member) / Chen, Tingyong (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
151514-Thumbnail Image.png
Description
Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result

Dealloying, the selective dissolution of an elemental component from an alloy, is an important corrosion mechanism and a technological significant means to fabricate nanoporous structures for a variety of applications. In noble metal alloys, dealloying proceeds above a composition dependent critical potential, and bi-continuous structure evolves "simultaneously" as a result of the interplay between percolation dissolution and surface diffusion. In contrast, dealloying in alloys that show considerable solid-state mass transport at ambient temperature is largely unexplored despite its relevance to nanoparticle catalysts and Li-ion anodes. In my dissertation, I discuss the behaviors of two alloy systems in order to elucidate the role of bulk lattice diffusion in dealloying. First, Mg-Cd alloys are chosen to show that when the dealloying is controlled by bulk diffusion, a new type of porosity - negative void dendrites will form, and the process mirrors electrodeposition. Then, Li-Sn alloys are studied with respect to the composition, particle size and dealloying rate effects on the morphology evolution. Under the right condition, dealloying of Li-Sn supported by percolation dissolution results in the same bi-continuous structure as nanoporous noble metals; whereas lattice diffusion through the otherwise "passivated" surface allows for dealloying with no porosity evolution. The interactions between bulk diffusion, surface diffusion and dissolution are revealed by chronopotentiometry and linear sweep voltammetry technics. The better understanding of dealloying from these experiments enables me to construct a brief review summarizing the electrochemistry and morphology aspects of dealloying as well as offering interpretations to new observations such as critical size effect and encased voids in nanoporous gold. At the end of the dissertation, I will describe a preliminary attempt to generalize the morphology evolution "rules of dealloying" to all solid-to-solid interfacial controlled phase transition process, demonstrating that bi-continuous morphologies can evolve regardless of the nature of parent phase.
ContributorsChen, Qing (Author) / Sieradzki, Karl (Thesis advisor) / Friesen, Cody (Committee member) / Buttry, Daniel (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2013
152319-Thumbnail Image.png
Description
In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably,

In this research, our goal was to fabricate Josephson junctions that can be stably processed at 300°C or higher. With the purpose of integrating Josephson junction fabrication with the current semiconductor circuit fabrication process, back-end process temperatures (>350 °C) will be a key for producing large scale junction circuits reliably, which requires the junctions to be more thermally stable than current Nb/Al-AlOx/Nb junctions. Based on thermodynamics, Hf was chosen to produce thermally stable Nb/Hf-HfOx/Nb superconductor tunnel Josephson junctions that can be grown or processed at elevated temperatures. Also elevated synthesis temperatures improve the structural and electrical properties of Nb electrode layers that could potentially improve junction device performance. The refractory nature of Hf, HfO2 and Nb allow for the formation of flat, abrupt and thermally-stable interfaces. But the current Al-based barrier will have problems when using with high-temperature grown and high-quality Nb. So our work is aimed at using Nb grown at elevated temperatures to fabricate thermally stable Josephson tunnel junctions. As a junction barrier metal, Hf was studied and compared with the traditional Al-barrier material. We have proved that Hf-HfOx is a good barrier candidate for high-temperature synthesized Josephson junction. Hf deposited at 500 °C on Nb forms flat and chemically abrupt interfaces. Nb/Hf-HfOx/Nb Josephson junctions were synthesized, fabricated and characterized with different oxidizing conditions. The results of materials characterization and junction electrical measurements are reported and analyzed. We have improved the annealing stability of Nb junctions and also used high-quality Nb grown at 500 °C as the bottom electrode successfully. Adding a buffer layer or multiple oxidation steps improves the annealing stability of Josephson junctions. We also have attempted to use the Atomic Layer Deposition (ALD) method for the growth of Hf oxide as the junction barrier and got tunneling results.
ContributorsHuang, Mengchu, 1987- (Author) / Newman, Nathan (Thesis advisor) / Rowell, John M. (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2013
153370-Thumbnail Image.png
Description
Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well

Membrane-based gas separation is promising for efficient propylene/propane (C3H6/C3H8) separation with low energy consumption and minimum environment impact. Two microporous inorganic membrane candidates, MFI-type zeolite membrane and carbon molecular sieve membrane (CMS) have demonstrated excellent thermal and chemical stability. Application of these membranes into C3H6/C3H8 separation has not been well investigated. This dissertation presents fundamental studies on membrane synthesis, characterization and C3H6/C3H8 separation properties of MFI zeolite membrane and CMS membrane.

MFI zeolite membranes were synthesized on α-alumina supports by secondary growth method. Novel positron annihilation spectroscopy (PAS) techniques were used to non-destructively characterize the pore structure of these membranes. PAS reveals a bimodal pore structure consisting of intracrystalline zeolitic micropores of ~0.6 nm in diameter and irregular intercrystalline micropores of 1.4 to 1.8 nm in size for the membranes. The template-free synthesized membrane exhibited a high permeance but a low selectivity in C3H6/C3H8 mixture separation.

CMS membranes were synthesized by coating/pyrolysis method on mesoporous γ-alumina support. Such supports allow coating of thin, high-quality polymer films and subsequent CMS membranes with no infiltration into support pores. The CMS membranes show strong molecular sieving effect, offering a high C3H6/C3H8 mixture selectivity of ~30. Reduction in membrane thickness from 500 nm to 300 nm causes an increase in C3H8 permeance and He/N2 selectivity, but a decrease in the permeance of He, N2 and C3H6 and C3H6/C3H8 selectivity. This can be explained by the thickness dependent chain mobility of the polymer film resulting in final carbon membrane of reduced pore size with different effects on transport of gas of different sizes, including possible closure of C3H6-accessible micropores.

CMS membranes demonstrate excellent C3H6/C3H8 separation performance over a wide range of feed pressure, composition and operation temperature. No plasticization was observed at a feed pressure up to 100 psi. The permeation and separation is mainly controlled by diffusion instead of adsorption. CMS membrane experienced a decline in permeance, and an increase in selectivity over time under on-stream C3H6/C3H8 separation. This aging behavior is due to the reduction in effective pore size and porosity caused by oxygen chemisorption and physical aging of the membrane structure.
ContributorsMa, Xiaoli (Author) / Lin, Jerry (Thesis advisor) / Alford, Terry (Committee member) / Chan, Candace (Committee member) / Arizona State University (Publisher)
Created2015
151100-Thumbnail Image.png
Description
The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC

The ability to shift the photovoltaic (PV) power curve and make the energy accessible during peak hours can be accomplished through pairing solar PV with energy storage technologies. A prototype hybrid air conditioning system (HACS), built under supervision of project head Patrick Phelan, consists of PV modules running a DC compressor that operates a conventional HVAC system paired with a second evaporator submerged within a thermal storage tank. The thermal storage is a 0.284m3 or 75 gallon freezer filled with Cryogel balls, submerged in a weak glycol solution. It is paired with its own separate air handler, circulating the glycol solution. The refrigerant flow is controlled by solenoid valves that are electrically connected to a high and low temperature thermostat. During daylight hours, the PV modules run the DC compressor. The refrigerant flow is directed to the conventional HVAC air handler when cooling is needed. Once the desired room temperature is met, refrigerant flow is diverted to the thermal storage, storing excess PV power. During peak energy demand hours, the system uses only small amounts of grid power to pump the glycol solution through the air handler (note the compressor is off), allowing for money and energy savings. The conventional HVAC unit can be scaled down, since during times of large cooling demands the glycol air handler can be operated in parallel with the conventional HVAC unit. Four major test scenarios were drawn up in order to fully comprehend the performance characteristics of the HACS. Upon initial running of the system, ice was produced and the thermal storage was charged. A simple test run consisting of discharging the thermal storage, initially ~¼ frozen, was performed. The glycol air handler ran for 6 hours and the initial cooling power was 4.5 kW. This initial test was significant, since greater than 3.5 kW of cooling power was produced for 3 hours, thus demonstrating the concept of energy storage and recovery.
ContributorsPeyton-Levine, Tobin (Author) / Phelan, Patrick (Thesis advisor) / Trimble, Steve (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
151124-Thumbnail Image.png
Description
The study of high energy particle irradiation effect on Josephson junction tri-layers is relevant to applications in space and radioactive environments. It also allows us to investigate the influence of defects and interfacial intermixing on the junction electrical characteristics. In this work, we studied the influence of 2MeV Helium ion

The study of high energy particle irradiation effect on Josephson junction tri-layers is relevant to applications in space and radioactive environments. It also allows us to investigate the influence of defects and interfacial intermixing on the junction electrical characteristics. In this work, we studied the influence of 2MeV Helium ion irradiation with doses up to 5.2×1016 ions/cm2 on the tunneling behavior of Nb/Al/AlOx/Nb Josephson junctions. Structural and analytical TEM characterization, combined with SRIM modeling, indicates that over 4nm of intermixing occurred at the interfaces. EDX analysis after irradiation, suggests that the Al and O compositions from the barrier are collectively distributed together over a few nanometers. Surprisingly, the IV characteristics were largely unchanged. The normal resistance, Rn, increased slightly (<20%) after the initial dose of 3.5×1015 ions/cm2 and remained constant after that. This suggests that tunnel barrier electrical properties were not affected much, despite the significant changes in the chemical distribution of the barrier's Al and O shown in SRIM modeling and TEM pictures. The onset of quasi-particle current, sum of energy gaps (2Δ), dropped systematically from 2.8meV to 2.6meV with increasing dosage. Similarly, the temperature onset of the Josephson current dropped from 9.2K to 9.0K. This suggests that the order parameter at the barrier interface has decreased as a result of a reduced mean free path in the Al proximity layer and a reduction in the transition temperature of the Nb electrode near the barrier. The dependence of Josephson current on the magnetic field and temperature does not change significantly with irradiation, suggesting that intermixing into the Nb electrode is significantly less than the penetration depth.
ContributorsZhang, Tiantian (Author) / Newman, Nathan (Thesis advisor) / Rowell, John M (Committee member) / Singh, Rakesh K. (Committee member) / Chamberlin, Ralph (Committee member) / Wang, Robert (Committee member) / Arizona State University (Publisher)
Created2012
153948-Thumbnail Image.png
Description
Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there

Nanoparticle suspensions, popularly termed “nanofluids,” have been extensively investigated for their thermal and radiative properties. Such work has generated great controversy, although it is arguably accepted today that the presence of nanoparticles rarely leads to useful enhancements in either thermal conductivity or convective heat transfer. On the other hand, there are still examples of unanticipated enhancements to some properties, such as the reported specific heat of molten salt-based nanofluids and the critical heat flux. Another largely overlooked example is the apparent effect of nanoparticles on the effective latent heat of vaporization (hfg) of aqueous nanofluids. A previous study focused on molecular dynamics (MD) modeling supplemented with limited experimental data to suggest that hfg increases with increasing nanoparticle concentration.

Here, this research extends that exploratory work in an effort to determine if hfg of aqueous nanofluids can be manipulated, i.e., increased or decreased, by the addition of graphite or silver nanoparticles. Our results to date indicate that hfg can be substantially impacted, by up to ± 30% depending on the type of nanoparticle. Moreover, this dissertation reports further experiments with changing surface area based on volume fraction (0.005% to 2%) and various nanoparticle sizes to investigate the mechanisms for hfg modification in aqueous graphite and silver nanofluids. This research also investigates thermophysical properties, i.e., density and surface tension in aqueous nanofluids to support the experimental results of hfg based on the Clausius - Clapeyron equation. This theoretical investigation agrees well with the experimental results. Furthermore, this research investigates the hfg change of aqueous nanofluids with nanoscale studies in terms of melting of silver nanoparticles and hydrophobic interactions of graphite nanofluid. As a result, the entropy change due to those mechanisms could be a main cause of the changes of hfg in silver and graphite nanofluids.

Finally, applying the latent heat results of graphite and silver nanofluids to an actual solar thermal system to identify enhanced performance with a Rankine cycle is suggested to show that the tunable latent heat of vaporization in nanofluilds could be beneficial for real-world solar thermal applications with improved efficiency.
ContributorsLee, Soochan (Author) / Phelan, Patrick E (Thesis advisor) / Wu, Carole-Jean (Thesis advisor) / Wang, Robert (Committee member) / Wang, Liping (Committee member) / Taylor, Robert A. (Committee member) / Prasher, Ravi (Committee member) / Arizona State University (Publisher)
Created2015
156109-Thumbnail Image.png
Description
Photocatalytic water splitting has been proposed as a promising way of generating carbon-neutral fuels from sunlight and water. In one approach, water decomposition is enabled by the use of functionalized nano-particulate photocatalyst composites. The atomic structures of the photocatalysts dictate their electronic and photonic structures, which are controlled by synthesis

Photocatalytic water splitting has been proposed as a promising way of generating carbon-neutral fuels from sunlight and water. In one approach, water decomposition is enabled by the use of functionalized nano-particulate photocatalyst composites. The atomic structures of the photocatalysts dictate their electronic and photonic structures, which are controlled by synthesis methods and may alter under reaction conditions. Characterizing these structures, especially the ones associated with photocatalysts’ surfaces, is essential because they determine the efficiencies of various reaction steps involved in photocatalytic water splitting. Due to its superior spatial resolution, (scanning) transmission electron microscopy (STEM/TEM), which includes various imaging and spectroscopic techniques, is a suitable tool for probing materials’ local atomic, electronic and optical structures. In this work, techniques specific for the study of photocatalysts are developed using model systems.

Nano-level structure-reactivity relationships as well as deactivation mechanisms of Ni core-NiO shell co-catalysts loaded on Ta2O5 particles are studied using an aberration-corrected TEM. It is revealed that nanometer changes in the shell thickness lead to significant changes in the H2 production. Also, deactivation of this system is found to be related to a photo-driven process resulting in the loss of the Ni core.

In addition, a special form of monochromated electron energy-loss spectroscopy (EELS), the so-called aloof beam EELS, is used to probe surface electronic states as well as light-particle interactions from model oxide nanoparticles. Surface states associated with hydrate species are analyzed using spectral simulations based on a dielectric theory and a density of states model. Geometry-induced optical-frequency resonant modes are excited using fast electrons in catalytically relevant oxides. Combing the spectral features detected in experiments with classical electrodynamics simulations, the underlying physics involved in this excitation process and the various influencing factors of the modes are investigated.

Finally, an in situ light illumination system is developed for an aberration-corrected environmental TEM to enable direct observation of atomic structural transformations of model photocatalysts while they are exposed to near reaction conditions.
ContributorsLiu, Qianlang (Author) / Crozier, Peter A. (Thesis advisor) / Chan, Candace (Committee member) / Buttry, Daniel (Committee member) / Liu, Jingyue (Committee member) / Nemanich, Robert (Committee member) / Arizona State University (Publisher)
Created2018
156208-Thumbnail Image.png
Description
In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or

In recent years, 40% of the total world energy consumption and greenhouse gas emissions is because of buildings. Out of that 60% of building energy consumption is due to HVAC systems. Under current trends these values will increase in coming years. So, it is important to identify passive cooling or heating technologies to meet this need. The concept of thermal energy storage (TES), as noted by many authors, is a promising way to rectify indoor temperature fluctuations. Due to its high energy density and the use of latent energy, Phase Change Materials (PCMs) are an efficient choice to use as TES. A question that has not satisfactorily been addressed, however, is the optimum location of PCM. In other words, given a constant PCM mass, where is the best location for it in a building? This thesis addresses this question by positioning PCM to obtain maximum energy savings and peak time delay. This study is divided into three parts. The first part is to understand the thermal behavior of building surfaces, using EnergyPlus software. For analysis, a commercial prototype building model for a small office in Phoenix, provided by the U.S. Department of Energy, is applied and the weather location file for Phoenix, Arizona is also used. The second part is to justify the best location, which is obtained from EnergyPlus, using a transient grey box building model. For that we have developed a Resistance-Capacitance (RC) thermal network and studied the thermal profile of a building in Phoenix. The final part is to find the best location for PCMs in buildings using EnergyPlus software. In this part, the mass of PCM used in each location remains unchanged. This part also includes the impact of the PCM mass on the optimized location and how the peak shift varies. From the analysis, it is observed that the ceiling is the best location to install PCM for yielding the maximum reduction in HVAC energy consumption for a hot, arid climate like Phoenix.
ContributorsPrem Anand Jayaprabha, Jyothis Anand (Author) / Phelan, Patrick (Thesis advisor) / Wang, Robert (Committee member) / Parrish, Kristen (Committee member) / Arizona State University (Publisher)
Created2018
156138-Thumbnail Image.png
Description
A novel Monte Carlo rejection technique for solving the phonon and electron

Boltzmann Transport Equation (BTE), including full many-particle interactions, is

presented in this work. This technique has been developed to explicitly model

population-dependent scattering within the full-band Cellular Monte Carlo (CMC)

framework to simulate electro-thermal transport in semiconductors, while ensuring

the conservation of energy

A novel Monte Carlo rejection technique for solving the phonon and electron

Boltzmann Transport Equation (BTE), including full many-particle interactions, is

presented in this work. This technique has been developed to explicitly model

population-dependent scattering within the full-band Cellular Monte Carlo (CMC)

framework to simulate electro-thermal transport in semiconductors, while ensuring

the conservation of energy and momentum for each scattering event. The scattering

algorithm directly solves the many-body problem accounting for the instantaneous

distribution of the phonons. The general approach presented is capable of simulating

any non-equilibrium phase-space distribution of phonons using the full phonon dispersion

without the need of the approximations commonly used in previous Monte Carlo

simulations. In particular, anharmonic interactions require no assumptions regarding

the dominant modes responsible for anharmonic decay, while Normal and Umklapp

scattering are treated on the same footing.

This work discusses details of the algorithmic implementation of the three particle

scattering for the treatment of the anharmonic interactions between phonons, as well

as treating isotope and impurity scattering within the same framework. The approach

is then extended with a technique based on the multivariable Hawkes point process

that has been developed to model the emission and the absorption process of phonons

by electrons.

The simulation code was validated by comparison with both analytical, numerical,

and experimental results; in particular, simulation results show close agreement with

a wide range of experimental data such as the thermal conductivity as function of the

isotopic composition, the temperature and the thin-film thickness.
ContributorsSabatti, Flavio Francesco Maria (Author) / Saraniti, Marco (Thesis advisor) / Smith, David J. (Committee member) / Wang, Robert (Committee member) / Goodnick, Stephen M (Committee member) / Arizona State University (Publisher)
Created2018