This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 134
151716-Thumbnail Image.png
Description
The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a

The rapid escalation of technology and the widespread emergence of modern technological equipments have resulted in the generation of humongous amounts of digital data (in the form of images, videos and text). This has expanded the possibility of solving real world problems using computational learning frameworks. However, while gathering a large amount of data is cheap and easy, annotating them with class labels is an expensive process in terms of time, labor and human expertise. This has paved the way for research in the field of active learning. Such algorithms automatically select the salient and exemplar instances from large quantities of unlabeled data and are effective in reducing human labeling effort in inducing classification models. To utilize the possible presence of multiple labeling agents, there have been attempts towards a batch mode form of active learning, where a batch of data instances is selected simultaneously for manual annotation. This dissertation is aimed at the development of novel batch mode active learning algorithms to reduce manual effort in training classification models in real world multimedia pattern recognition applications. Four major contributions are proposed in this work: $(i)$ a framework for dynamic batch mode active learning, where the batch size and the specific data instances to be queried are selected adaptively through a single formulation, based on the complexity of the data stream in question, $(ii)$ a batch mode active learning strategy for fuzzy label classification problems, where there is an inherent imprecision and vagueness in the class label definitions, $(iii)$ batch mode active learning algorithms based on convex relaxations of an NP-hard integer quadratic programming (IQP) problem, with guaranteed bounds on the solution quality and $(iv)$ an active matrix completion algorithm and its application to solve several variants of the active learning problem (transductive active learning, multi-label active learning, active feature acquisition and active learning for regression). These contributions are validated on the face recognition and facial expression recognition problems (which are commonly encountered in real world applications like robotics, security and assistive technology for the blind and the visually impaired) and also on collaborative filtering applications like movie recommendation.
ContributorsChakraborty, Shayok (Author) / Panchanathan, Sethuraman (Thesis advisor) / Balasubramanian, Vineeth N. (Committee member) / Li, Baoxin (Committee member) / Mittelmann, Hans (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2013
151926-Thumbnail Image.png
Description
In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems.

In recent years, machine learning and data mining technologies have received growing attention in several areas such as recommendation systems, natural language processing, speech and handwriting recognition, image processing and biomedical domain. Many of these applications which deal with physiological and biomedical data require person specific or person adaptive systems. The greatest challenge in developing such systems is the subject-dependent data variations or subject-based variability in physiological and biomedical data, which leads to difference in data distributions making the task of modeling these data, using traditional machine learning algorithms, complex and challenging. As a result, despite the wide application of machine learning, efficient deployment of its principles to model real-world data is still a challenge. This dissertation addresses the problem of subject based variability in physiological and biomedical data and proposes person adaptive prediction models based on novel transfer and active learning algorithms, an emerging field in machine learning. One of the significant contributions of this dissertation is a person adaptive method, for early detection of muscle fatigue using Surface Electromyogram signals, based on a new multi-source transfer learning algorithm. This dissertation also proposes a subject-independent algorithm for grading the progression of muscle fatigue from 0 to 1 level in a test subject, during isometric or dynamic contractions, at real-time. Besides subject based variability, biomedical image data also varies due to variations in their imaging techniques, leading to distribution differences between the image databases. Hence a classifier learned on one database may perform poorly on the other database. Another significant contribution of this dissertation has been the design and development of an efficient biomedical image data annotation framework, based on a novel combination of transfer learning and a new batch-mode active learning method, capable of addressing the distribution differences across databases. The methodologies developed in this dissertation are relevant and applicable to a large set of computing problems where there is a high variation of data between subjects or sources, such as face detection, pose detection and speech recognition. From a broader perspective, these frameworks can be viewed as a first step towards design of automated adaptive systems for real world data.
ContributorsChattopadhyay, Rita (Author) / Panchanathan, Sethuraman (Thesis advisor) / Ye, Jieping (Thesis advisor) / Li, Baoxin (Committee member) / Santello, Marco (Committee member) / Arizona State University (Publisher)
Created2013
151940-Thumbnail Image.png
Description
Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided

Biological systems are complex in many dimensions as endless transportation and communication networks all function simultaneously. Our ability to intervene within both healthy and diseased systems is tied directly to our ability to understand and model core functionality. The progress in increasingly accurate and thorough high-throughput measurement technologies has provided a deluge of data from which we may attempt to infer a representation of the true genetic regulatory system. A gene regulatory network model, if accurate enough, may allow us to perform hypothesis testing in the form of computational experiments. Of great importance to modeling accuracy is the acknowledgment of biological contexts within the models -- i.e. recognizing the heterogeneous nature of the true biological system and the data it generates. This marriage of engineering, mathematics and computer science with systems biology creates a cycle of progress between computer simulation and lab experimentation, rapidly translating interventions and treatments for patients from the bench to the bedside. This dissertation will first discuss the landscape for modeling the biological system, explore the identification of targets for intervention in Boolean network models of biological interactions, and explore context specificity both in new graphical depictions of models embodying context-specific genomic regulation and in novel analysis approaches designed to reveal embedded contextual information. Overall, the dissertation will explore a spectrum of biological modeling with a goal towards therapeutic intervention, with both formal and informal notions of biological context, in such a way that will enable future work to have an even greater impact in terms of direct patient benefit on an individualized level.
ContributorsVerdicchio, Michael (Author) / Kim, Seungchan (Thesis advisor) / Baral, Chitta (Committee member) / Stolovitzky, Gustavo (Committee member) / Collofello, James (Committee member) / Arizona State University (Publisher)
Created2013
151963-Thumbnail Image.png
Description
Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to

Currently, to interact with computer based systems one needs to learn the specific interface language of that system. In most cases, interaction would be much easier if it could be done in natural language. For that, we will need a module which understands natural language and automatically translates it to the interface language of the system. NL2KR (Natural language to knowledge representation) v.1 system is a prototype of such a system. It is a learning based system that learns new meanings of words in terms of lambda-calculus formulas given an initial lexicon of some words and their meanings and a training corpus of sentences with their translations. As a part of this thesis, we take the prototype NL2KR v.1 system and enhance various components of it to make it usable for somewhat substantial and useful interface languages. We revamped the lexicon learning components, Inverse-lambda and Generalization modules, and redesigned the lexicon learning algorithm which uses these components to learn new meanings of words. Similarly, we re-developed an inbuilt parser of the system in Answer Set Programming (ASP) and also integrated external parser with the system. Apart from this, we added some new rich features like various system configurations and memory cache in the learning component of the NL2KR system. These enhancements helped in learning more meanings of the words, boosted performance of the system by reducing the computation time by a factor of 8 and improved the usability of the system. We evaluated the NL2KR system on iRODS domain. iRODS is a rule-oriented data system, which helps in managing large set of computer files using policies. This system provides a Rule-Oriented interface langauge whose syntactic structure is like any procedural programming language (eg. C). However, direct translation of natural language (NL) to this interface language is difficult. So, for automatic translation of NL to this language, we define a simple intermediate Policy Declarative Language (IPDL) to represent the knowledge in the policies, which then can be directly translated to iRODS rules. We develop a corpus of 100 policy statements and manually translate them to IPDL langauge. This corpus is then used for the evaluation of NL2KR system. We performed 10 fold cross validation on the system. Furthermore, using this corpus, we illustrate how different components of our NL2KR system work.
ContributorsKumbhare, Kanchan Ravishankar (Author) / Baral, Chitta (Thesis advisor) / Ye, Jieping (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2013
151793-Thumbnail Image.png
Description
Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to

Linear Temporal Logic is gaining increasing popularity as a high level specification language for robot motion planning due to its expressive power and scalability of LTL control synthesis algorithms. This formalism, however, requires expert knowledge and makes it inaccessible to non-expert users. This thesis introduces a graphical specification environment to create high level motion plans to control robots in the field by converting a visual representation of the motion/task plan into a Linear Temporal Logic (LTL) specification. The visual interface is built on the Android tablet platform and provides functionality to create task plans through a set of well defined gestures and on screen controls. It uses the notion of waypoints to quickly and efficiently describe the motion plan and enables a variety of complex Linear Temporal Logic specifications to be described succinctly and intuitively by the user without the need for the knowledge and understanding of LTL specification. Thus, it opens avenues for its use by personnel in military, warehouse management, and search and rescue missions. This thesis describes the construction of LTL for various scenarios used for robot navigation using the visual interface developed and leverages the use of existing LTL based motion planners to carry out the task plan by a robot.
ContributorsSrinivas, Shashank (Author) / Fainekos, Georgios (Thesis advisor) / Baral, Chitta (Committee member) / Burleson, Winslow (Committee member) / Arizona State University (Publisher)
Created2013
151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
151471-Thumbnail Image.png
Description
In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and practical. The easiest portion of that impact to highlight concerns

In this dissertation I develop a deep theory of temporal planning well-suited to analyzing, understanding, and improving the state of the art implementations (as of 2012). At face-value the work is strictly theoretical; nonetheless its impact is entirely real and practical. The easiest portion of that impact to highlight concerns the notable improvements to the format of the temporal fragment of the International Planning Competitions (IPCs). Particularly: the theory I expound upon here is the primary cause of--and justification for--the altered (i) selection of benchmark problems, and (ii) notion of "winning temporal planner". For higher level motivation: robotics, web service composition, industrial manufacturing, business process management, cybersecurity, space exploration, deep ocean exploration, and logistics all benefit from applying domain-independent automated planning technique. Naturally, actually carrying out such case studies has much to offer. For example, we may extract the lesson that reasoning carefully about deadlines is rather crucial to planning in practice. More generally, effectively automating specifically temporal planning is well-motivated from applications. Entirely abstractly, the aim is to improve the theory of automated temporal planning by distilling from its practice. My thesis is that the key feature of computational interest is concurrency. To support, I demonstrate by way of compilation methods, worst-case counting arguments, and analysis of algorithmic properties such as completeness that the more immediately pressing computational obstacles (facing would-be temporal generalizations of classical planning systems) can be dealt with in theoretically efficient manner. So more accurately the technical contribution here is to demonstrate: The computationally significant obstacle to automated temporal planning that remains is just concurrency.
ContributorsCushing, William Albemarle (Author) / Kambhampati, Subbarao (Thesis advisor) / Weld, Daniel S. (Committee member) / Smith, David E. (Committee member) / Baral, Chitta (Committee member) / Davalcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2012
152770-Thumbnail Image.png
Description
Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms

Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms of perceived regularity. Our human visual system (HVS) uses the perceived regularity as one of the important pre-attentive cues in low-level image understanding. Similar to the HVS, image processing and computer vision systems can make fast and efficient decisions if they can quantify this regularity automatically. In this work, the problem of quantifying the degree of perceived regularity when looking at an arbitrary texture is introduced and addressed. One key contribution of this work is in proposing an objective no-reference perceptual texture regularity metric based on visual saliency. Other key contributions include an adaptive texture synthesis method based on texture regularity, and a low-complexity reduced-reference visual quality metric for assessing the quality of synthesized textures. In order to use the best performing visual attention model on textures, the performance of the most popular visual attention models to predict the visual saliency on textures is evaluated. Since there is no publicly available database with ground-truth saliency maps on images with exclusive texture content, a new eye-tracking database is systematically built. Using the Visual Saliency Map (VSM) generated by the best visual attention model, the proposed texture regularity metric is computed. The proposed metric is based on the observation that VSM characteristics differ between textures of differing regularity. The proposed texture regularity metric is based on two texture regularity scores, namely a textural similarity score and a spatial distribution score. In order to evaluate the performance of the proposed regularity metric, a texture regularity database called RegTEX, is built as a part of this work. It is shown through subjective testing that the proposed metric has a strong correlation with the Mean Opinion Score (MOS) for the perceived regularity of textures. The proposed method is also shown to be robust to geometric and photometric transformations and outperforms some of the popular texture regularity metrics in predicting the perceived regularity. The impact of the proposed metric to improve the performance of many image-processing applications is also presented. The influence of the perceived texture regularity on the perceptual quality of synthesized textures is demonstrated through building a synthesized textures database named SynTEX. It is shown through subjective testing that textures with different degrees of perceived regularities exhibit different degrees of vulnerability to artifacts resulting from different texture synthesis approaches. This work also proposes an algorithm for adaptively selecting the appropriate texture synthesis method based on the perceived regularity of the original texture. A reduced-reference texture quality metric for texture synthesis is also proposed as part of this work. The metric is based on the change in perceived regularity and the change in perceived granularity between the original and the synthesized textures. The perceived granularity is quantified through a new granularity metric that is proposed in this work. It is shown through subjective testing that the proposed quality metric, using just 2 parameters, has a strong correlation with the MOS for the fidelity of synthesized textures and outperforms the state-of-the-art full-reference quality metrics on 3 different texture databases. Finally, the ability of the proposed regularity metric in predicting the perceived degradation of textures due to compression and blur artifacts is also established.
ContributorsVaradarajan, Srenivas (Author) / Karam, Lina J (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Li, Baoxin (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Arizona State University (Publisher)
Created2014
152790-Thumbnail Image.png
Description
Modeling dynamic systems is an interesting problem in Knowledge Representation (KR) due to their usefulness in reasoning about real-world environments. In order to effectively do this, a number of different formalisms have been considered ranging from low-level languages, such as Answer Set Programming (ASP), to high-level action languages, such as

Modeling dynamic systems is an interesting problem in Knowledge Representation (KR) due to their usefulness in reasoning about real-world environments. In order to effectively do this, a number of different formalisms have been considered ranging from low-level languages, such as Answer Set Programming (ASP), to high-level action languages, such as C+ and BC. These languages show a lot of promise over many traditional approaches as they allow a developer to automate many tasks which require reasoning within dynamic environments in a succinct and elaboration tolerant manner. However, despite their strengths, they are still insufficient for modeling many systems, especially those of non-trivial scale or that require the ability to cope with exceptions which occur during execution, such as unexpected events or unintended consequences to actions which have been performed. In order to address these challenges, a theoretical framework is created which focuses on improving the feasibility of applying KR techniques to such problems. The framework is centered on the action language BC+, which integrates many of the strengths of existing KR formalisms, and provides the ability to perform efficient reasoning in an incremental fashion while handling exceptions which occur during execution. The result is a developer friendly formalism suitable for performing reasoning in an online environment. Finally, the newly enhanced Cplus2ASP 2 is introduced, which provides a number of improvements over the original version. These improvements include implementing BC+ among several additional languages, providing enhanced developer support, and exhibiting a significant performance increase over its predecessors and similar systems.
ContributorsBabb, Joseph (Author) / Lee, Joohyung (Thesis advisor) / Lee, Yann-Hang (Committee member) / Baral, Chitta (Committee member) / Arizona State University (Publisher)
Created2014
152579-Thumbnail Image.png
Description
This qualitative study examines the major changes in relationship closeness of married couples when one spouse acquires a vision disability. Turning Points analysis and Retrospective Interview Technique (RIT) were utilized which required participants to plot their relational journey on a graph after the onset of the disability. A sample of

This qualitative study examines the major changes in relationship closeness of married couples when one spouse acquires a vision disability. Turning Points analysis and Retrospective Interview Technique (RIT) were utilized which required participants to plot their relational journey on a graph after the onset of the disability. A sample of 32 participants generating 100 unique turning points and 32 RIT graphs lent in-depth insight into the less explored area of the impact of a visual disability on marital relationships. A constant comparison method employed for the analysis of these turning points revealed six major categories, which include Change in Relational Dynamics, Realization of the Disability, Regaining Normality in Life, Resilience, Reactions to Assistance, and Dealing with the Disability. These turning points differ in terms of their positive or negative impact on the relational closeness between partners. In addition, the 32 individual RIT graphs were also analyzed and were grouped into four categories based on visual similarity, which include Erratic Relational Restoration, Erratic Relational Increase, Consistent Closeness and Gradual Relational Increase. Results provide theoretical contributions to disability and marriage literature. Implications for the application of turning points to the study of post-disability marital relationships are also discussed, and research directions identified.
ContributorsBhagchandani, Bhoomika (Author) / Kassing, Jeffrey W. (Thesis advisor) / Kelley, Douglas L. (Committee member) / Fisher, Carla L. (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2014