This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 70
152208-Thumbnail Image.png
Description
Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households

Vehicle type choice is a significant determinant of fuel consumption and energy sustainability; larger, heavier vehicles consume more fuel, and expel twice as many pollutants, than their smaller, lighter counterparts. Over the course of the past few decades, vehicle type choice has seen a vast shift, due to many households making more trips in larger vehicles with lower fuel economy. During the 1990s, SUVs were the fastest growing segment of the automotive industry, comprising 7% of the total light vehicle market in 1990, and 25% in 2005. More recently, due to rising oil prices, greater awareness to environmental sensitivity, the desire to reduce dependence on foreign oil, and the availability of new vehicle technologies, many households are considering the use of newer vehicles with better fuel economy, such as hybrids and electric vehicles, over the use of the SUV or low fuel economy vehicles they may already own. The goal of this research is to examine how vehicle miles traveled, fuel consumption and emissions may be reduced through shifts in vehicle type choice behavior. Using the 2009 National Household Travel Survey data it is possible to develop a model to estimate household travel demand and total fuel consumption. If given a vehicle choice shift scenario, using the model it would be possible to calculate the potential fuel consumption savings that would result from such a shift. In this way, it is possible to estimate fuel consumption reductions that would take place under a wide variety of scenarios.
ContributorsChristian, Keith (Author) / Pendyala, Ram M. (Thesis advisor) / Chester, Mikhail (Committee member) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2013
151653-Thumbnail Image.png
Description
Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling

Answer Set Programming (ASP) is one of the most prominent and successful knowledge representation paradigms. The success of ASP is due to its expressive non-monotonic modeling language and its efficient computational methods originating from building propositional satisfiability solvers. The wide adoption of ASP has motivated several extensions to its modeling language in order to enhance expressivity, such as incorporating aggregates and interfaces with ontologies. Also, in order to overcome the grounding bottleneck of computation in ASP, there are increasing interests in integrating ASP with other computing paradigms, such as Constraint Programming (CP) and Satisfiability Modulo Theories (SMT). Due to the non-monotonic nature of the ASP semantics, such enhancements turned out to be non-trivial and the existing extensions are not fully satisfactory. We observe that one main reason for the difficulties rooted in the propositional semantics of ASP, which is limited in handling first-order constructs (such as aggregates and ontologies) and functions (such as constraint variables in CP and SMT) in natural ways. This dissertation presents a unifying view on these extensions by viewing them as instances of formulas with generalized quantifiers and intensional functions. We extend the first-order stable model semantics by by Ferraris, Lee, and Lifschitz to allow generalized quantifiers, which cover aggregate, DL-atoms, constraints and SMT theory atoms as special cases. Using this unifying framework, we study and relate different extensions of ASP. We also present a tight integration of ASP with SMT, based on which we enhance action language C+ to handle reasoning about continuous changes. Our framework yields a systematic approach to study and extend non-monotonic languages.
ContributorsMeng, Yunsong (Author) / Lee, Joohyung (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Baral, Chitta (Committee member) / Fainekos, Georgios (Committee member) / Lifschitz, Vladimir (Committee member) / Arizona State University (Publisher)
Created2013
152495-Thumbnail Image.png
Description
Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server

Attribute Based Access Control (ABAC) mechanisms have been attracting a lot of interest from the research community in recent times. This is especially because of the flexibility and extensibility it provides by using attributes assigned to subjects as the basis for access control. ABAC enables an administrator of a server to enforce access policies on the data, services and other such resources fairly easily. It also accommodates new policies and changes to existing policies gracefully, thereby making it a potentially good mechanism for implementing access control in large systems, particularly in today's age of Cloud Computing. However management of the attributes in ABAC environment is an area that has been little touched upon. Having a mechanism to allow multiple ABAC based systems to share data and resources can go a long way in making ABAC scalable. At the same time each system should be able to specify their own attribute sets independently. In the research presented in this document a new mechanism is proposed that would enable users to share resources and data in a cloud environment using ABAC techniques in a distributed manner. The focus is mainly on decentralizing the access policy specifications for the shared data so that each data owner can specify the access policy independent of others. The concept of ontologies and semantic web is introduced in the ABAC paradigm that would help in giving a scalable structure to the attributes and also allow systems having different sets of attributes to communicate and share resources.
ContributorsPrabhu Verleker, Ashwin Narayan (Author) / Huang, Dijiang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2014
152385-Thumbnail Image.png
Description
This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual

This thesis addresses the ever increasing threat of botnets in the smartphone domain and focuses on the Android platform and the botnets using Online Social Networks (OSNs) as Command and Control (C&C;) medium. With any botnet, C&C; is one of the components on which the survival of botnet depends. Individual bots use the C&C; channel to receive commands and send the data. This thesis develops active host based approach for identifying the presence of bot based on the anomalies in the usage patterns of the user before and after the bot is installed on the user smartphone and alerting the user to the presence of the bot. A profile is constructed for each user based on the regular web usage patterns (achieved by intercepting the http(s) traffic) and implementing machine learning techniques to continuously learn the user's behavior and changes in the behavior and all the while looking for any anomalies in the user behavior above a threshold which will cause the user to be notified of the anomalous traffic. A prototype bot which uses OSN s as C&C; channel is constructed and used for testing. Users are given smartphones(Nexus 4 and Galaxy Nexus) running Application proxy which intercepts http(s) traffic and relay it to a server which uses the traffic and constructs the model for a particular user and look for any signs of anomalies. This approach lays the groundwork for the future host-based counter measures for smartphone botnets using OSN s as C&C; channel.
ContributorsKilari, Vishnu Teja (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2013
152787-Thumbnail Image.png
Description

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface

Nighttime visibility of pavement markings is provided by glass beads embedded into the striping surface. The glass beads take light from the vehicle headlamps and reflect it back to the driver. This phenomenon is known as retroreflection. Literature suggests that the amount of the bead embedded into the striping surface has a profound impact on the intensity of the retroreflected light. In order to gain insight into how the glass beads provide retroreflection, an experiment was carried out to produce paint stripes with glass beads and measure the retroreflection. Samples were created at various application rates and embedment depths, in an attempt to verify the optimal embedment and observe the effect of application rate on retroreflection. The experiment was conducted using large, airport quality beads and small, road quality beads. Image analysis was used to calculate the degree to which beads were embedded and in an attempt to quantify bead distribution on the stripe surface. The results from the large beads showed that retroreflection was maximized when the beads were embedded approximately seventy percent by bead volume. The results also showed that as the application rate increased, the retroreflection increased, up to a point and then decreased. A model was developed to estimate the retroreflectivity given the amount of beads, bead spacing, and distribution of bead embedment. Results from the small beads were less conclusive, but did demonstrate that the larger beads are better at providing retroreflection. Avenues for future work in this area were identified as the experiment was conducted.

ContributorsStevens, Ryan David (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2014
152795-Thumbnail Image.png
Description

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population

The activity-based approach to travel demand analysis and modeling, which has been developed over the past 30 years, has received tremendous success in transportation planning and policy analysis issues, capturing the multi-way joint relationships among socio-demographic, economic, land use characteristics, activity participation, and travel behavior. The development of synthesizing population with an array of socio-demographic and socio-economic attributes has drawn remarkable attention due to privacy and cost constraints in collecting and disclosing full scale data. Although, there has been enormous progress in producing synthetic population, there has been less progress in the development of population evolution modeling arena to forecast future year population. The objective of this dissertation is to develop a well-structured full-fledged demographic evolution modeling system, capturing migration dynamics and evolution of person level attributes, introducing the concept of new household formations and apprehending the dynamics of household level long-term choices over time. A comprehensive study has been conducted on demography, sociology, anthropology, economics and transportation engineering area to better understand the dynamics of evolutionary activities over time and their impacts in travel behavior. This dissertation describes the methodology and the conceptual framework, and the development of model components. Demographic, socio-economic, and land use data from American Community Survey, National Household Travel Survey, Census PUMS, United States Time Series Economic Dynamic data and United States Center for Disease Control and Prevention have been used in this research. The entire modeling system has been implemented and coded using programming language to develop the population evolution module named `PopEvol' into a computer simulation environment. The module then has been demonstrated for a portion of Maricopa County area in Arizona to predict the milestone year population to check the accuracy of forecasting. The module has also been used to evolve the base year population for next 15 years and the evolutionary trend has been investigated.

ContributorsPaul, Sanjay (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Ahn, Soyoung (Committee member) / Arizona State University (Publisher)
Created2014
152874-Thumbnail Image.png
Description
The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In

The widespread adoption of mobile devices gives rise to new opportunities and challenges for authentication mechanisms. Many traditional authentication mechanisms become unsuitable for smart devices. For example, while password is widely used on computers as user identity authentication, inputting password on small smartphone screen is error-prone and not convenient. In the meantime, there are emerging demands for new types of authentication. Proximity authentication is an example, which is not needed for computers but quite necessary for smart devices. These challenges motivate me to study and develop novel authentication mechanisms specific for smart devices.

In this dissertation, I am interested in the special authentication demands of smart devices and about to satisfy the demands. First, I study how the features of smart devices affect user identity authentications. For identity authentication domain, I aim to design a continuous, forge-resistant authentication mechanism that does not interrupt user-device interactions. I propose a mechanism that authenticates user identity based on the user's finger movement patterns. Next, I study a smart-device-specific authentication, proximity authentication, which authenticates whether two devices are in close proximity. For prox- imity authentication domain, I aim to design a user-friendly authentication mechanism that can defend against relay attacks. In addition, I restrict the authenticated distance to the scale of near field, i.e., a few centimeters. My first design utilizes a user's coherent two-finger movement on smart device screen to restrict the distance. To achieve a fully-automated system, I explore acoustic communications and propose a novel near field authentication system.
ContributorsLi, Lingjun (Author) / Xue, Guoliang (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Ye, Jieping (Committee member) / Zhang, Yanchao (Committee member) / Arizona State University (Publisher)
Created2014
153307-Thumbnail Image.png
Description

This study investigates the mastic level structure of asphalt concrete containing RAP materials. Locally sourced RAP material was screened and sieved to separate the coated fines (passing #200) from the remaining sizes. These binder coated fines were mixed with virgin filler at proportions commensurate with 0%, 10%, 30%, 50% and

This study investigates the mastic level structure of asphalt concrete containing RAP materials. Locally sourced RAP material was screened and sieved to separate the coated fines (passing #200) from the remaining sizes. These binder coated fines were mixed with virgin filler at proportions commensurate with 0%, 10%, 30%, 50% and 100% RAP dosage levels. Mastics were prepared with these blended fillers and a PG 64-22 binder at a filler content of 27% by volume. Rheological experiments were conducted on the resulting composites as well as the constituents, virgin binder, solvent extracted RAP binder. The results from the dynamic modulus experiments showed an expected increase in stiffness with increase in dosage levels. These results were used to model the hypothesized structure of the composite. The study presented discusses the different micromechanical models employed, their applicability and suitability to correctly predict the blended mastic composite. The percentage of blending between virgin and RAP binder estimated using Herve and Zaoui model decreased with increase in RAP content.

ContributorsGundla, Akshay (Author) / Underwood, Shane (Thesis advisor) / Kaloush, Kamil (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2014
153001-Thumbnail Image.png
Description
Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding

Traffic congestion is a major externality in modern transportation systems with negative economic, environmental and social impacts. Freeway bottlenecks are one of the key elements besides the demand for travel by automobiles that determine the extent of congestion. The primary objective of this research is to provide a better understanding of factors for variations in bottleneck discharge rates. Specifically this research seeks to (i) develop a methodology comparable to the rigorous methods to identify bottlenecks and measure capacity drop and its temporal (day to day) variations in a region, (ii) understand the variations in discharge rate of a freeway weaving bottleneck with a HOV lane and (iii) understand the relationship between lane flow distribution and discharge rate on a weaving bottleneck resulted from a lane drop and a busy off-ramp. In this research, a methodology has been developed to de-noise raw data using Discrete Wavelet Transforms (DWT). The de-noised data is then used to precisely identify bottleneck activation and deactivation times, and measure pre-congestion and congestion flows using Continuous Wavelet Transforms (CWT). To this end a methodology which could be used efficiently to identify and analyze freeway bottlenecks in a region in a consistent, reproducible manner was developed. Using this methodology, 23 bottlenecks have been identified in the Phoenix metropolitan region, some of which result in long queues and large delays during rush-hour periods. A study of variations in discharge rate of a freeway weaving bottleneck with a HOV lane showed that the bottleneck discharge rate diminished by 3-25% upon queue formations, however, the discharge rate recovered shortly thereafter upon high-occupancy-vehicle (HOV) lane activation and HOV lane flow distribution (LFD) has a significant effect on the bottleneck discharge rate: the higher the HOV LFD, the lower the bottleneck discharge rate. The effect of lane flow distribution and its relationship with bottleneck discharge rate on a weaving bottleneck formed by a lane drop and a busy off-ramp was studied. The results showed that the bottleneck discharge rate and lane flow distribution are linearly related and higher utilization of the median lane results in higher bottleneck discharge rate.
ContributorsKandala, Srinivasa Srivatsav (Author) / Ahn, Soyoung (Thesis advisor) / Pendyala, Ram (Committee member) / Kaloush, Kamil (Committee member) / Arizona State University (Publisher)
Created2014
153149-Thumbnail Image.png
Description

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations

Institutions of higher education, particularly those with large student enrollments, constitute special generators that contribute in a variety of ways to the travel demand in a region. Despite the importance of university population travel characteristics in understanding and modeling activity-travel patterns and mode choice behavior in a region, such populations remain under-studied. As metropolitan planning organizations continue to improve their regional travel models by incorporating processes and parameters specific to major regional special generators, university population travel characteristics need to be measured and special submodels that capture their behavior need to be developed. The research presented herein begins by documenting the design and administration of a comprehensive university student online travel and mode use survey that was administered at Arizona State University (ASU) in the Greater Phoenix region of Arizona. The dissertation research offers a detailed statistical analysis of student travel behavior for different student market segments. A framework is then presented for incorporating university student travel into a regional travel demand model. The application of the framework to the ASU student population is documented in detail. A comprehensive university student submodel was estimated and calibrated for integration with the full regional travel model system. Finally, student attitudes toward travel are analyzed and used as explanatory factors in multinomial logit models of mode choice. This analysis presents an examination of the extent to which attitudes play a role in explaining mode choice behavior of university students in an urban setting. The research provides evidence that student travel patterns vary substantially from those of the rest of the population, and should therefore be considered separately when forecasting travel demand and formulating transport policy in areas where universities are major contributors to regional travel.

ContributorsVolosin, Sarah Elia (Author) / Pendyala, Ram M. (Thesis advisor) / Kaloush, Kamil (Committee member) / Konduri, Karthik C (Committee member) / Arizona State University (Publisher)
Created2014