This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
156242-Thumbnail Image.png
Description
Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape-

Habitat fragmentation, the loss of habitat in the landscape and spatial isolation of remaining habitat patches, has long been considered a serious threat to biodiversity. However, the study of habitat fragmentation is fraught with definitional and conceptual challenges. Specifically, a multi-scale perspective is needed to address apparent disagreements between landscape- and patch-based studies that have caused significant uncertainty concerning fragmentation’s effects on biological communities. Here I tested the hypothesis that habitat fragmentation alters biological communities by creating hierarchically nested selective pressures across plot-, patch-, and landscape-scales using woody plant community datasets from Thousand Island Lake, China. In this archipelago edge-effects had little impact on species-diversity. However, the amount of habitat in the surrounding landscape had a positive effect on species richness at the patch-scale and sets of small islands accumulated species faster than sets of large islands of equal total size at the landscape-scale. In contrast, at the functional-level edge-effects decreased the proportion of shade-tolerant trees, island-effects increased the proportion of shade- intolerant trees, and these two processes interacted to alter the functional composition of the regional pool when the total amount of habitat in the landscape was low. By observing interdependent fragmentation-mediated effects at each scale, I found support for the hypothesis that habitat fragmentation’s effects are hierarchically structured.
ContributorsWilson, Maxwell (Author) / Wu, Jianguo (Thesis advisor) / Smith, Andrew (Committee member) / Hall, Sharon (Committee member) / Jiang, Lin (Committee member) / Cease, Arianne (Committee member) / Arizona State University (Publisher)
Created2018
157423-Thumbnail Image.png
Description
Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth.

Aboveground net primary production (ANPP) is an important ecosystem process that, in drylands, is most frequently limited by water availability. Water availability for plants is in part controlled by the water holding capacity of soils. Available water holding capacity (AWHC) of soils is strongly influenced by soil texture and depth. This study drew upon localized rain gauge data and four data-sets of cover-line and biomass data to estimate ANPP and to determine annual precipitation (PPT). I measured soil depth to caliche and texture by layer of 112 plots across the four landscape units for which estimation of ANPP were available. A pedotransfer function was used to estimate AWHC from soil depth increments to depth of caliche measurements and texture analysis. These data were analyzed using simple and multivariate regression to test the effect of annual precipitation and available water holding capacity on aboveground net primary production. Soil texture remained constant among all plots (sandy loam) and depth to caliche varied from 15.16 cm to 189 cm. AWHC and the interaction term (PPT*AWHC) were insignificant (p=0.142, p=0.838) and annual PPT accounted for 18.4% of the variation in ANPP. The y-intercept was significantly different for ANPP ~ annual PPT when considering AWHC values either above or below 3 cm. Shrub ANPP was insensitive to precipitation regardless of AWHC (R2=-0.012, R2=0.014). Results from this study indicate that a model incorporating annual PPT and AWHC may not serve as a good predictor for ANPP at a site level where there is little variation in soil texture.
ContributorsWagner, Svenja K (Author) / Sala, Osvaldo E. (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Peters, Debra (Committee member) / Arizona State University (Publisher)
Created2019
187874-Thumbnail Image.png
Description
Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence

Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence of specific nutrients and their relative balance. This dissertation explores the role of relative nutrient content in the food selection decisions of a species that is eusocial and also agricultural, the desert leafcutter ant Acromyrmex versicolor. A dietary choice assay, in which the relative amount of protein and carbohydrates in the available diets was varied, demonstrated that A. versicolor colonies regulate relative collection of protein and carbohydrates. Tracking the foraging behavior of individual workers revelaed that foragers vary in their relative collection of experimental diets and in their foraging frequency, but that there is no relationship between these key factors of foraging behavior. The high proportion of carbohydrates preferred by lab colonies suggests that they forage to nutritionally support the fungus rather than brood and workers. To test this, the relative amounts of 1) fungus, and 2) brood (larvae) was manipulated and foraging response was measured. Changing the amount of brood had no effect on foraging. Although decreasing the size of fungus gardens did not change relative P:C collection, it produced significant increases in caloric intake, supporting the assertion that the fungus is the main driver of colony nutrient regulation. The nutritional content of naturally harvested forage material collected from field colonies was measured, as was recruitment to experimental diets with varying relative macronutrient content. Field results confirmed a strong colony preference for high carbohydrate diets. They also indicated that this species may, at times, be limited in its ability to collect sufficiently high levels of carbohydrates to meet optimal intake. This dissertation provides important insights about fundamental aspects of leafcutter ant biology and extends our understanding of the role of relative nutrient content in foraging decisions to systems that span multiple trophic levels.
ContributorsSmith, Nathan Edward (Author) / Fewell, Jennifer H (Thesis advisor) / Harrison, Jon F (Committee member) / Pavlic, Ted (Committee member) / Cease, Arianne (Committee member) / Hoelldobler, Bert (Committee member) / Arizona State University (Publisher)
Created2023
187605-Thumbnail Image.png
Description
The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and

The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and ecology, and interactions between nutritional physiology and biopesticide resistance have very little research. This dissertation presents a multifaceted approach through three research-driven chapters that examine the nutritional physiology of M. sanguinipes and how it interacts with an entomopathogenic fungus for grasshopper management, as well as the challenges of using biopesticides for grasshopper management. Using the Geometric Framework for Nutrition (GFN), I established baseline macronutrient intake for M. sanguinipes, both in laboratory and field populations. Through this work, I found that field and lab populations can exhibit different protein (p) to carbohydrate (c) ratios, or Intake Targets (ITs), but that the field populations had ITs that matched the nutrients available in their environment. I also used the GFN to show that infections with the fungal entomopathogen Metarhizium robertsii DWR2009 did not alter ITs in M. sanguinipes. Although, when confined to carbohydrate- or protein-biased diets, infected grasshoppers had a slightly extended lifespan relative to grasshoppers fed balanced protein:carbohydrate diets. Interestingly, in a postmortem for the grasshopper, the fungus was only able to effectively sporulate on grasshoppers fed the 1p:1c diets, suggesting that grasshopper diet can have substantial impacts on the spread of fungal biopesticides throughout a population, in the absence of any inhibitory abiotic factors. Lastly, I examined the major barriers to fungal and microsporidian biopesticide usage in the United States, including low efficacy, thermal and environmental sensitivity, non-target effects, unregistered or restricted use, and economic or accessibility barriers. I also explored potential solutions to these challenges. This dissertation's focus on Melanoplus sanguinipes and Metarhizium roberstii Strain DWR2009, generates new information about how nutritional physiology and immunology intersect to impact M. sanguinipes performance. The methodology in each of the experimental chapters provides a framework for examining other problematic grasshopper species, by determining baseline nutritional physiology, and coupling nutrition with immunology to maximize the effectiveness of biological pesticides.
ContributorsZembrzuski, Deanna (Author) / Cease, Arianne (Thesis advisor) / Harrison, Jon (Committee member) / Angilletta, Michael (Committee member) / Jaronski, Stefan (Committee member) / Arizona State University (Publisher)
Created2023
191702-Thumbnail Image.png
Description
Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is

Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is through the reduction of the mosquito vector population size and/or reducing vector-human contact using insecticides. Frontline tools in malaria (an MBD caused by a parasite) control and elimination have been drugs (targeting the malaria parasite) and insecticides (targeting the vectors) through indoor residual spraying (IRS) (spraying the internal walls and sometimes the roofs of dwellings with residual insecticides to kill adult mosquito vectors), and long-lasting insecticidal nets (LLINs), while arboviral vectors are frequently targeted using outdoor fogging and space spraying (indoor or outdoor spraying of insecticides to kill adult mosquito vectors). Integrative and novel vector control efforts are urgently needed since the aforementioned tools may not be as effective against those mosquito species that are resistant to insecticides and/or have a different (or changed) behavior allowing them to avoid existing tools. In Chapters 2 and 3, I investigate mosquito vector surveillance in Arizona by (i) discussing the species composition and public health implications of the State’s mosquito fauna, and (ii) comparing the effectiveness of 4 different carbon dioxide (CO2) sources in attracting different mosquito species on the Arizona State University Tempe Campus. In Chapters 4 and 5, I investigate a novel vector control tool by (i) completing a literature review on using electric fields (EFs) to control insects, and (ii) presenting novel data on using Insulated Conductor Wires (ICWs) to generate EFs that prevent host-seeking female Aedes aegypti from entering spaces. In Chapter 6, I discuss the non-target effects of chemical malaria control on other arthropods, including other biological and mechanical infectious disease vectors. Overall, this dissertation highlights the important role that the development of novel surveillance and vector control tools could play in improved mosquito control, which ultimately will reduce disease morbidity and mortality.
ContributorsJobe, Ndey Bassin (Author) / Paaijmans, Krijn (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Huijben, Silvie (Committee member) / Arizona State University (Publisher)
Created2024
161793-Thumbnail Image.png
Description
Spatial and temporal patterns of biodiversity are shaped, in part, by the resources available to biota, the efficiency of resource transfer through the food web, and variation in environmental conditions. Stream and riparian zones are dynamic systems connected through reciprocal resource exchange and shaped by floods, droughts, and long-term patterns

Spatial and temporal patterns of biodiversity are shaped, in part, by the resources available to biota, the efficiency of resource transfer through the food web, and variation in environmental conditions. Stream and riparian zones are dynamic systems connected through reciprocal resource exchange and shaped by floods, droughts, and long-term patterns in the quantity, timing, and variability of streamflow (flow regime). The interdependent nature of the stream-riparian ecosystem defies the scope of any single discipline, requiring novel approaches to untangle the controls on ecological processes. In this dissertation, I explored multiple mechanisms through which streamflow and energy flow pathways maintain the community and trophic dynamics of desert stream and riparian food webs. I conducted seasonal sampling of Arizona streams on a gradient of flow regime variability to capture fluctuations in aquatic communities and ecosystem production. I found that flow regime shapes fish community structure and the trajectory of community response following short-term flow events by constraining the life history traits of communities, which fluctuate in prevalence following discrete events. Streamflow may additionally constrain the efficiency of energy flow from primary producers to consumers. I estimated annual food web efficiency and found that efficiency decreased with higher temperature and more variable flow regime. Surprisingly, fish production was not related to the rate of aquatic primary production. To understand the origin of resources supporting aquatic and riparian food webs, I studied the contribution of aquatic and terrestrial primary production to consumers in both habitats. I demonstrated that emergent insects “recycled” terrestrial primary production back to the riparian zone, reducing the proportion of aquatic primary production in emergent insect biomass and riparian predator diet. To expand the concept of stream and riparian zones as an integrated ecosystem connected by resource cycling through the food web, I introduced a quantitative framework describing reciprocal interconnections across spatial boundaries and demonstrated strong aquatic-riparian interdependencies along an Arizona river. In this dissertation, I develop a novel perspective on the stream-riparian ecosystem as an intertwined food web, which may be vulnerable to unforeseen impacts of global change if not considered in the context of streamflow and resource dynamics.
ContributorsBaruch, Ethan Max (Author) / Sabo, John (Thesis advisor) / Bateman, Heather (Committee member) / Cease, Arianne (Committee member) / Grimm, Nancy (Committee member) / Arizona State University (Publisher)
Created2021
168609-Thumbnail Image.png
Description
By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to

By increasing the mean and variance of environmental temperatures, climate change has caused local extinctions and range shifts of numerous species. However, biologists disagree on which populations and species are most vulnerable to future warming. This debate arises because biologists do not know which physiological processes are most vulnerable to temperature or how to model these processes in complex environments. Using the South American locust (Schistocerca cancellata) as a model system, my dissertation addressed this debate and explained how climate limits the persistence of locust populations. Locusts of S. cancellata are serious agricultural pests with occasional outbreaks covering up to 4 million km2 over six countries. Because outbreaks are largely driven by climate, understanding how climate limits the persistence of locusts may help predict crop losses in future climates. To achieve this aim, I integrated observational, experimental, and computational approaches. First, I tested a physiological model of heat stress. By measuring the heat tolerance of locusts under different oxygen concentrations, I demonstrated that heat tolerance depends on oxygen supply during the hatchling stage only. Second, I modeled the geographic distribution of locusts using physiological traits. I started by measuring thermal effects on consumption and defecation of field-captured locusts, and I then used these data to model energy gain in current and future climates. My results indicated that incorporating physiological mechanisms can improve the accuracy of models and alter predicted impacts of climate change. Finally, I explored the causes and consequences of intraspecific variation in heat tolerance. After measuring heat tolerance of locusts in different hydration states and developmental stages, I modeled survival in historical microclimates. My models indicated that recent climate change has amplified the risk of overheating for locusts, and this risk depended strongly on shade availability, hydration state, and developmental stage. Therefore, the survival of locusts in future climates will likely depend on their access to shade and water. Overall, my dissertation argues that modeling physiological mechanisms can improve the ability of biologists to predict the impacts of climate change.
ContributorsYoungblood, Jacob (Author) / Angilletta, Michael (Thesis advisor) / Buckley, Lauren (Committee member) / Cease, Arianne (Committee member) / Smith, Brian (Committee member) / Vanden Brooks, John (Committee member) / Arizona State University (Publisher)
Created2022
171961-Thumbnail Image.png
Description
Eusocial insect colonies have often been imagined as “superorganisms” exhibiting tight homeostasis at the colony level. However, colonies lack the tight spatial and organizational integration that many multicellular, unitary organisms exhibit. Precise regulation requires rapid feedback, which is often not possible when nestmates are distributed across space, making decisions asynchronously.

Eusocial insect colonies have often been imagined as “superorganisms” exhibiting tight homeostasis at the colony level. However, colonies lack the tight spatial and organizational integration that many multicellular, unitary organisms exhibit. Precise regulation requires rapid feedback, which is often not possible when nestmates are distributed across space, making decisions asynchronously. Thus, one should expect poorer regulation in superorganisms than unitary organisms.Here, I investigate aspects of regulation in collective foraging behaviors that involve both slow and rapid feedback processes. In Chapter 2, I examine a tightly coupled system with near-instantaneous signaling: teams of weaver ants cooperating to transport massive prey items back to their nest. I discover that over an extreme range of scenarios—even up vertical surfaces—the efficiency per transporter remains constant. My results suggest that weaver ant colonies are maximizing their total intake rate by regulating the allocation of transporters among loads. This is an exception that “proves the rule;” the ant teams are recapitulating the physical integration of unitary organisms. Next, I focus on a process with greater informational constraints, with loose temporal and spatial integration. In Chapter 3, I measure the ability of solitarily foraging Ectatomma ruidum colonies to balance their collection of protein and carbohydrates given different nutritional environments. Previous research has found that ant species can precisely collect a near-constant ratio between these two macronutrients, but I discover these studies were using flawed statistical approaches. By developing a quantitative measure of regulatory effect size, I show that colonies of E. ruidum are relatively insensitive to small differences in food source nutritional content, contrary to previously published claims. In Chapter 4, I design an automated, micro-RFID ant tracking system to investigate how the foraging behavior of individuals integrates into colony-level nutrient collection. I discover that spatial fidelity to food resources, not individual specialization on particular nutrient types, best predicts individual forager behavior. These findings contradict previously published experiments that did not use rigorous quantitative measures of specialization and confounded the effects of task type and resource location.
ContributorsBurchill, Andrew Taylor (Author) / Pavlic, Theodore P (Thesis advisor) / Pratt, Stephen C (Thesis advisor) / Hölldobler, Bert (Committee member) / Cease, Arianne (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2022